Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 151,02
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 232 pages. 9.25x6.10x0.53 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 152,69
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. hardback/cd-rom edition. 211 pages. 9.50x6.50x0.50 inches. In Stock.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization | Donald Davendra (u. a.) | Taschenbuch | xvii | Englisch | 2017 | Springer Berlin | EAN 9783662518922 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Apr 2017, 2017
ISBN 10: 3662518929 ISBN 13: 9783662518922
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -What is combinatorial optimization Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem¿s feasible solutions - permutations of city labels - c- prise a nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem¿s goal is to pack objects of differing weight and value so that the knapsack¿s total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch.
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Jan 2009, 2009
ISBN 10: 3540921508 ISBN 13: 9783540921509
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -What is combinatorial optimization Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem¿s feasible solutions - permutations of city labels - c- prise a nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem¿s goal is to pack objects of differing weight and value so that the knapsack¿s total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch.
Verlag: Springer Berlin Heidelberg, 2017
ISBN 10: 3662518929 ISBN 13: 9783662518922
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - What is combinatorial optimization Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem's feasible solutions - permutations of city labels - c- prise a nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem's goal is to pack objects of differing weight and value so that the knapsack's total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.
Verlag: Springer Berlin Heidelberg, 2009
ISBN 10: 3540921508 ISBN 13: 9783540921509
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - What is combinatorial optimization Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem's feasible solutions - permutations of city labels - c- prise a nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem's goal is to pack objects of differing weight and value so that the knapsack's total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.
Verlag: Springer Berlin Heidelberg, 2009
ISBN 10: 3540921508 ISBN 13: 9783540921509
Sprache: Englisch
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.