Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
EUR 100,60
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 111,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer Berlin Heidelberg, 2008
ISBN 10: 3642098614 ISBN 13: 9783642098611
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 151,88
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 268 pages. 9.00x6.00x0.64 inches. In Stock.
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Mai 2008, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 106,99
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642098614 ISBN 13: 9783642098611
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 106,99
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Verlag: Springer Berlin Heidelberg, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 106,99
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 164,97
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.