Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 133,91
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 134,60
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 350 pages. 9.00x6.00x8.93 inches. In Stock.
EUR 217,46
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. 2025. 1st Edition. paperback. . . . . . Books ship from the US and Ireland.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 198,53
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 350 pages. 9.00x6.00x8.93 inches. In Stock.
Verlag: Elsevier Science Feb 2025, 2025
ISBN 10: 0443264848 ISBN 13: 9780443264849
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 210,50
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware - Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.