Sprache: Englisch
Verlag: Pragmatic Programmers, LLC, The, 2016
ISBN 10: 1680501844 ISBN 13: 9781680501841
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Anbieter: ThriftBooks-Phoenix, Phoenix, AZ, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 41,05
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 1st edition. 200 pages. 9.50x7.50x0.40 inches. In Stock.
EUR 28,72
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist.Über den AutorrnrnDmitry Zinoviev has an MS in Physics from Moscow S.
Sprache: Englisch
Verlag: Pragmatic Programmers Sep 2016, 2016
ISBN 10: 1680501844 ISBN 13: 9781680501841
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work.
Anbieter: Buchpark, Trebbin, Deutschland
EUR 14,61
Anzahl: 1 verfügbar
In den WarenkorbZustand: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher | Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work.