Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
EUR 19,00
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorb2006. 16 x 24 cm. XII, 520 S. XII, 520 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. (Progress in Nonlinear Differential Equations and Their Applications). Sprache: Englisch.
Verlag: Basel ; Boston ; Berlin : Birkhäuser, 2006
Sprache: Englisch
Anbieter: Antiquariat Thomas Haker GmbH & Co. KG, Berlin, Deutschland
Verbandsmitglied: GIAQ
EUR 15,90
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover/Pappeinband. Zustand: Sehr gut. XII, 518 p. :ill. ; 24 cm. Very good. Shrink wrapped. / Sehr guter Zustand. In Folie verschweißt. Sprache: Englisch Gewicht in Gramm: 1100.
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
EUR 39,53
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Fine. First edition, first printing, 518 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
EUR 107,58
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 106,99
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 116,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.