Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (7)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

  • Neu (7)
  • Wie Neu, Sehr Gut oder Gut Bis Sehr Gut (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Gut oder Befriedigend (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Ausreichend oder Schlecht (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Wie beschrieben (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Einband

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (3)

Sprache (1)

Preis

Benutzerdefinierte Preisspanne (EUR)

Gratisversand

  • Kostenloser Versand nach USA (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Land des Verkäufers

  • Mukhopadhyay, Sudipta; Tripathi, Abhishek Kumar

    Verlag: Springer, 2015

    ISBN 10: 3031011244 ISBN 13: 9783031011245

    Sprache: Englisch

    Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 13,78 für den Versand von Vereinigtes Königreich nach USA

    Versandziele, Kosten & Dauer

    Anzahl: Mehr als 20 verfügbar

    In den Warenkorb

    Zustand: New. In English.

  • Mukhopadhyay, Sudipta, Tripathi, Abhishek Kumar

    Verlag: Springer, 2015

    ISBN 10: 3031011244 ISBN 13: 9783031011245

    Sprache: Englisch

    Anbieter: Kennys Bookstore, Olney, MD, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 9,04 für den Versand innerhalb von/der USA

    Versandziele, Kosten & Dauer

    Anzahl: 15 verfügbar

    In den Warenkorb

    Zustand: New. 2015. 1st Edition. paperback. . . . . . Books ship from the US and Ireland.

  • Mukhopadhyay, Sudipta; Tripathi, Abhishek Kumar

    Verlag: Springer, 2014

    ISBN 10: 3031011236 ISBN 13: 9783031011238

    Sprache: Englisch

    Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 13,78 für den Versand von Vereinigtes Königreich nach USA

    Versandziele, Kosten & Dauer

    Anzahl: Mehr als 20 verfügbar

    In den Warenkorb

    Zustand: New. In English.

  • Mukhopadhyay, Sudipta, Tripathi, Abhishek Kumar

    Verlag: Springer, 2014

    ISBN 10: 3031011236 ISBN 13: 9783031011238

    Sprache: Englisch

    Anbieter: Kennys Bookstore, Olney, MD, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 9,04 für den Versand innerhalb von/der USA

    Versandziele, Kosten & Dauer

    Anzahl: 15 verfügbar

    In den Warenkorb

    Zustand: New. 2014. Paperback. . . . . . Books ship from the US and Ireland.

  • Abhishek Kumar Tripathi

    Verlag: Springer International Publishing, 2015

    ISBN 10: 3031011244 ISBN 13: 9783031011245

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 60,92 für den Versand von Deutschland nach USA

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.

  • Abhishek Kumar Tripathi

    Verlag: Springer International Publishing, Springer International Publishing Dez 2014, 2014

    ISBN 10: 3031011236 ISBN 13: 9783031011238

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 60,00 für den Versand von Deutschland nach USA

    Versandziele, Kosten & Dauer

    Anzahl: 2 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Neuware -Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics. An efficient rain removal algorithm using meteorological properties of rain is developed. The relation among the orientation of the raindrops, wind velocity and terminal velocity is established. This relation is used in the estimation of shape-based features of the raindrop. Meteorological property-based features helped to discriminate the rain and non-rain pixels. Most of the prior art algorithms are designed for the videos captured by a static camera. The use of global motion compensation with all rain removal algorithms designed for videos captured by static camera results in better accuracy for videos captured by moving camera. Qualitative and quantitative results confirm that probabilistic temporal, spatiotemporal and meteorological algorithms outperformed other prior art algorithms in terms of the perceptual quality, buffer size, execution delay and system cost. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Rain / Dataset and Performance Metrics / Important Rain Detection Algorithms / Probabilistic Approach for Detection and Removal of Rain / Impact of Camera Motion on Detection of Rain / Meteorological Approach for Detection and Removal of Rain from Videos / Conclusion and Scope of Future Work / Bibliography / Authors' BiographiesSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch.

  • Abhishek Kumar Tripathi

    Verlag: Springer International Publishing, 2014

    ISBN 10: 3031011236 ISBN 13: 9783031011238

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 60,99 für den Versand von Deutschland nach USA

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics. An efficient rain removal algorithm using meteorological properties of rain is developed. The relation among the orientation of the raindrops, wind velocity and terminal velocity is established. This relation is used in the estimation of shape-based features of the raindrop. Meteorological property-based features helped to discriminate the rain and non-rain pixels. Most of the prior art algorithms are designed for the videos captured by a static camera. The use of global motion compensation with all rain removal algorithms designed for videos captured by static camera results in better accuracy for videos captured by moving camera. Qualitative and quantitative results confirm that probabilistic temporal, spatiotemporal and meteorological algorithms outperformed other prior art algorithms in terms of the perceptual quality, buffer size, execution delay and system cost. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Rain / Dataset and Performance Metrics / Important Rain Detection Algorithms / Probabilistic Approach for Detection and Removal of Rain / Impact of Camera Motion on Detection of Rain / Meteorological Approach for Detection and Removal of Rain from Videos / Conclusion and Scope of Future Work / Bibliography / Authors' Biographies.