Hardcover. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less.
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
XVI, 372 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. The Springer Series on Challenges in Machine Learning. Sprache: Englisch.
Verlag: Springer International Publishing, 2020
ISBN 10: 3030218120 ISBN 13: 9783030218126
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Cause Effect Pairs in Machine Learning | Isabelle Guyon (u. a.) | Taschenbuch | xvi | Englisch | 2020 | Springer International Publishing | EAN 9783030218126 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer-Nature New York Inc, 2020
ISBN 10: 3030218120 ISBN 13: 9783030218126
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 155,31
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 388 pages. 9.25x6.10x0.94 inches. In Stock.
Verlag: Springer International Publishing, Springer International Publishing Nov 2020, 2020
ISBN 10: 3030218120 ISBN 13: 9783030218126
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (¿Does altitude cause a change in atmospheric pressure, or vice versa ¿) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a ¿causal mechanism¿, in the sense that the values of one variable may have been generated from the values of the other.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 388 pp. Englisch.
Verlag: Springer International Publishing, Springer International Publishing, 2020
ISBN 10: 3030218120 ISBN 13: 9783030218126
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents ground-breaking advances in the domain of causal structure learning.The problem of distinguishing cause from effect('Does altitude cause a change in atmospheric pressure, or vice versa ') is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of theChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a 'causal mechanism', in the sense that the values of one variable may have been generated from the values of the other.This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
Verlag: Springer International Publishing, Springer Nature Switzerland Nov 2019, 2019
ISBN 10: 3030218090 ISBN 13: 9783030218096
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (¿Does altitude cause a change in atmospheric pressure, or vice versa ¿) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a ¿causal mechanism¿, in the sense that the values of one variable may have been generated from the values of the other.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 388 pp. Englisch.
Verlag: Springer International Publishing, Springer Nature Switzerland, 2019
ISBN 10: 3030218090 ISBN 13: 9783030218096
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents ground-breaking advances in the domain of causal structure learning.The problem of distinguishing cause from effect('Does altitude cause a change in atmospheric pressure, or vice versa ') is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of theChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a 'causal mechanism', in the sense that the values of one variable may have been generated from the values of the other.This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 225,09
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 372 pages. 9.25x6.25x1.00 inches. In Stock.