Zustand: Gut. Zustand: Gut | Seiten: 600 | Sprache: Englisch | Produktart: Bücher.
Verlag: Oxford : University Press, 2006
ISBN 10: 0199202494 ISBN 13: 9780199202492
Sprache: Englisch
Anbieter: Klondyke, Almere, Niederlande
EUR 55,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. Original boards, illustrated with numerous equations, 8vo. Oxford Graduate Texts in Mathematics, 6.; Name in pen on title page.
Verlag: Oxford University Press, USA, 2006
ISBN 10: 0199202494 ISBN 13: 9780199202492
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 82,25
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 85,40
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 577 pages. 9.25x6.25x1.25 inches. In Stock.
EUR 102,75
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. This new-in-paperback edition provides an introduction to algebraic and arithmetic geometry, starting with the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. Clear explanations of both .
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 159,65
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Oxford University Press (UK) Jul 2002, 2002
ISBN 10: 0198502842 ISBN 13: 9780198502845
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 312,71
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group.The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford.The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.