Verlag: World Scientific Publishing Company, 1993
ISBN 10: 9810211627 ISBN 13: 9789810211622
Sprache: Englisch
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: New. 208 pp., Hardcover, NEW in a NEW dust jacket. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Verlag: Providence, American Mathematical Society [1995]., 1995
ISBN 10: 0821841238 ISBN 13: 9780821841235
Sprache: Englisch
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 00A10 AME Ser.2/vol.164 9780821841235 Sprache: Englisch Gewicht in Gramm: 1150.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 135,33
Anzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Springer, Springer Nature Singapore, 2025
ISBN 10: 9819798116 ISBN 13: 9789819798117
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a collection of significant and original contributions that delve into the realm of nonlinear evolution equations and their applications, encompassing both theory and practical usage. Serving as a dynamic platform for interdisciplinary collaboration, it facilitates the exchange of innovative ideas among scientists from diverse fields who share a keen interest in the intricate world of evolution equations. The book bridges the gap between theory and practicality, offering valuable insights for researchers and enthusiasts alike, transcending disciplinary boundaries.Evolution equations, a subset of partial differential equations, serve as mathematical tools to depict the temporal transformation of physical systems from their initial states. These equations find widespread utility in modeling various real-world phenomena across diverse disciplines. Notable examples of nonlinear evolution equations include the heat equation, which characterizes the evolution of heat distribution over time; the nonlinear Schrödinger equation, instrumental in understanding data transmission in fiber optic communication systems; the Korteweg-de Vries equation, illuminating the dynamics of surface water waves; and the portrayal of ion-acoustic waves in cold plasma.