Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. XIII, 389 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16498 9783764365325 Sprache: Englisch Gewicht in Gramm: 1050.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Gebundene Ausgabe, Gr.-8°. Zustand: Sehr gut. 2001. 402 S. Das Buch ist in sehr gutem, sauberen Zustand. Gebundenes Buch mit Original-Schutzumschlag. Dieser mit minimalen. Randläsuren. -----Inhalt:. It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite "nearly" simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called "internal geometric analysis" by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. I Rank One Groups.- 1 Definition, examples, basic properties.- 2 On the structure of rank one groups.- 3 Quadratic modules.- 4 Rank one groups and buildings.- 5 Structure and embeddings of special rank one groups.- II Abstract Root Subgroups.- 1 Definitions and examples.- 2 Basic properties of groups generated by abstract root subgroups.- 3 Triangle groups.- 4 The radical R(G).- 5 Abstract root subgroups and Lie type groups.- III Classification Theory.- 1 Abstract transvection groups.- 2 The action of G on ?.- 3 The linear groups and EK6.- 4 Moufang hexagons.- 5 The orthogonal groups.- 6 D4(k).- 7 Metasymplectic spaces.- 8 E6(k),E7(k) and E8(k).- 9 The classification theorems.- IV Root involutions.- 1 General properties of groups generated by root involutions.- 2 Root subgroups.- 3 The Root Structure Theorem.- 4 The Rank Two Case.- V Applications.- 1 Quadratic pairs.- 2 Subgroups generated by root elements.- 3 Local BN-pairs.- References.- Symbol Index. ISBN: 9783764365325 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 1043.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 155,04
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2001 edition. 408 pages. 9.70x6.70x1.00 inches. In Stock.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Abstract Root Subgroups and Simple Groups of Lie-Type | Franz G. Timmesfeld | Taschenbuch | xiii | Englisch | 2012 | Birkhäuser | EAN 9783034875967 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Birkhäuser Basel, Springer Basel Aug 2001, 2001
ISBN 10: 3764365323 ISBN 13: 9783764365325
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 408 pp. Englisch.
Verlag: Birkhäuser Basel, Springer Basel, 2012
ISBN 10: 3034875967 ISBN 13: 9783034875967
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson.