Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 84,50
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 84,50
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: SpringBooks, Berlin, Deutschland
Erstausgabe
EUR 40,10
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Very Good. 1. Auflage. Unread, with a mimimum of shelfwear. Immediately dispatched from Germany.
Verlag: Springer International Publishing, Springer Nature Switzerland Okt 2020, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 171,19
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch.
Verlag: Springer International Publishing, Springer International Publishing Okt 2019, 2019
ISBN 10: 3030139689 ISBN 13: 9783030139681
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 171,19
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware -This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch.
Verlag: Springer International Publishing, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 171,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.
Verlag: Springer International Publishing, 2019
ISBN 10: 3030139689 ISBN 13: 9783030139681
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 171,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.
Verlag: Springer-Verlag New York Inc, 2019
ISBN 10: 3030139689 ISBN 13: 9783030139681
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 248,35
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 476 pages. 9.25x6.10x1.34 inches. In Stock.