Zustand: Very Good. 1986th Edition. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects.
Verlag: Kluwer Academic Publishers, 1986
ISBN 10: 0898382238 ISBN 13: 9780898382235
Sprache: Englisch
Anbieter: Ammareal, Morangis, Frankreich
EUR 6,99
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Très bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Couverture différente. Edition 1986. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Slight signs of wear on the cover. Different cover. Edition 1986. Ammareal gives back up to 15% of this item's net price to charity organizations.
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New.
Taschenbuch. Zustand: Neu. Machine Learning of Inductive Bias | Paul E. Utgoff | Taschenbuch | xviii | Englisch | 2012 | Springer | EAN 9781461294085 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer US, Springer New York, 2012
ISBN 10: 1461294088 ISBN 13: 9781461294085
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is based on the author's Ph.D. dissertation. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is based on the author's Ph.D. dissertation. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.