23,5 x 15,5 cm. Zustand: Gut. 1. Auflage. 12 Seiten A Course in Constructing Mathematical Proofs. Innen sauberer, guter Zustand. Softcover, Broschur mit den üblichen Bibliotheks-Markierungen, Stempeln und Einträgen, innen wie außen, siehe Bilder. (Evtl. auch Kleber- und/oder Etikettenreste, sowie -abdrücke durch abgelöste Bibliotheksschilder). DC-10-3 Sprache: Englisch Gewicht in Gramm: 210.
Verlag: Springer (edition Softcover reprint of the original 1st ed. 1982), 1998
ISBN 10: 0387907068 ISBN 13: 9780387907062
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Fair. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way. Softcover reprint of the original 1st ed. 1982.
Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland
Zustand: Gut. 136 Seiten Exemplar aus einer wissenchaftlichen Bibliothek Sprache: Englisch Gewicht in Gramm: 206 2340004864,0 x 1560003200,0 x 90000176,0 cm, Taschenbuch.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 79,50
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Elementary Theory of Metric Spaces | A Course in Constructing Mathematical Proofs | Robert B. Reisel | Taschenbuch | 120 S. | Englisch | 1998 | Springer | EAN 9780387907062 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer New York, Springer US, 1998
ISBN 10: 0387907068 ISBN 13: 9780387907062
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Science students have to spend much of their time learning how to do laboratory work, even if they intend to become theoretical, rather than experimental, scientists. It is important that they understand how experiments are performed and what the results mean. In science the validity of ideas is checked by experiments. If a new idea does not work in the laboratory, it must be discarded. If it does work, it is accepted, at least tentatively. In science, therefore, laboratory experiments are the touchstones for the acceptance or rejection of results. Mathematics is different. This is not to say that experiments are not part of the subject. Numerical calculations and the examina tion of special and simplified cases are important in leading mathematicians to make conjectures, but the acceptance of a conjecture as a theorem only comes when a proof has been constructed. In other words, proofs are to mathematics as laboratory experiments are to science. Mathematics students must, therefore, learn to know what constitute valid proofs and how to construct them. How is this done Like everything else, by doing. Mathematics students must try to prove results and then have their work criticized by experienced mathematicians. They must critically examine proofs, both correct and incorrect ones, and develop an appreciation of good style. They must, of course, start with easy proofs and build to more complicated ones.