Anbieter: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, USA
Zustand: Good. Birkhauser Verlag, 1989. No dust jacket; spine ends/bottom edges very lightly bumped; edges lightly soiled; ffep faintly foxed with light erasures; binding tight; cover and interior intact and exceptionally clean; due to the weight of this item, additional shipping charges may apply. hardcover. Good.
Hardcover. Zustand: Bon. Ancien livre de bibliothèque. Jaquette abîmée. Edition 1988. Tome 1. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Damaged dust jacket. Edition 1988. Volume 1. Ammareal gives back up to 15% of this item's net price to charity organizations.
Zustand: New. A telling analysis of the pre-war media debate around the globe which set the stage for the 2003 Iraq war. By concentrating on the pre-war coverage, this group of scholars engages in a more open discussion of the issues than would take place during wartime, and uncovers the implications for each country's position on international concerns. Editor(s): Hakanen, Ernest. Num Pages: 290 pages, biography. BIC Classification: JFD; JPA; JPB; JPS; JW. Category: (G) General (US: Trade). Dimension: 216 x 140. . . 2006. Paperback. . . . . Books ship from the US and Ireland.
Zustand: New. Editor(s): Hakanen, Ernest. Num Pages: 290 pages, biography. BIC Classification: 1FBQ; 1KBB; HBJF1; HBLW3; JFD; JPS; JPWL; JWL. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College); (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 216 x 140 x 22. Weight in Grams: 521. . 2006. Hardback. . . . . Books ship from the US and Ireland.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 5 The Mathematical Theory of Iterative Methods.- 5.1 Several results from functional analysis.- 5.1.1 Linear spaces.- 5.1.2 Operators in linear normed spaces.- 5.1.3 Operators in a Hilbert space.- 5.1.4 Functions of a bounded operator.- 5.1.5 Operators in a finite-dimensional space.- 5.1.6 The solubility of operator equations.- 5.2 Difference schemes as operator equations.- 5.2.1 Examples of grid-function spaces.- 5.2.2 Several difference identities.- 5.2.3 Bounds for the simplest difference operators.- 5.2.4 Lower bounds for certain difference operators.- 5.2.5 Upper bounds for difference operators.- 5.2.6 Difference schemes as operator equations in abstract spaces.- 5.2.7 Difference schemes for elliptic equations with constant coefficients.- 5.2.8 Equations with variable coefficients and with mixed derivatives.- 5.3 Basic concepts from the theory of iterative methods.- 5.3.1 The steady state method.- 5.3.2 Iterative schemes.- 5.3.3 Convergence and iteration counts.- 5.3.4 Classification of iterative methods.- 6 Two-Level Iterative Methods.- 6.1 Choosing the iterative parameters.- 6.1.1 The initial family of iterative schemes.- 6.1.2 The problem for the error.- 6.1.3 The self-adjoint case.- 6.2 The Chebyshev two-level method.- 6.2.1 Construction of the set of iterative parameters.- 6.2.2 On the optimality of the a priori estimate.- 6.2.3 Sample choices for the operator D.- 6.2.4 On the computational stability of the method.- 6.2.5 Construction of the optimal sequence of iterative parameters.- 6.3 The simple iteration method.- 6.3.1 The choice of the iterative parameter.- 6.3.2 An estimate for the norm of the transformation operator.- 6.4 The non-self-adjoint case. The simple iteration method.- 6.4.1 Statement of the problem.- 6.4.2 Minimizing the norm of the transformation operator.- 6.4.3 Minimizing the norm of the resolving operator.- 6.4.4 The symmetrization method.- 6.5 Sample applications of the iterative methods.- 6.5.1 A Dirichlet difference problem for Poisson¿s equation in a rectangle.- 6.5.2 A Dirichlet difference problem for Poisson¿s equation in an arbitrary region.- 6.5.3 A Dirichlet difference problem for an elliptic equation with variable coefficients.- 6.5.4 A Dirichlet difference problem for an elliptic equation with mixed derivatives.- 7 Three-Level Iterative Methods.- 7.1 An estimate of the convergence rate.- 7.1.1 The basic family of iterative schemes.- 7.1.2 An estimate for the norm of the error.- 7.2 The Chebyshev semi-iterative method.- 7.2.1 Formulas for the iterative parameters.- 7.2.2 Sample choices for the operator D.- 7.2.3 The algorithm of the method.- 7.3 The stationary three-level method.- 7.3.1 The choice of the iterative parameters.- 7.3.2 An estimate for the rate of convergence.- 7.4 The stability of two-level and three-level methods relative to a priori data.- 7.4.1 Statement of the problem.- 7.4.2 Estimates for the convergence rates of the methods.- 8 Iterative Methods of Variational Type.- 8.1 Two-level gradient methods.- 8.1.1 The choice of the iterative parameters.- 8.1.2 A formula for the iterative parameters.- 8.1.3 An estimate of the convergence rate.- 8.1.4 Optimality of the estimate in the self-adjoint case.- 8.1.5 An asymptotic property of the gradient methods in the self-adjoint case.- 8.2 Examples of two-level gradient methods.- 8.2.1 The steepest-descent method.- 8.2.2 The minimal residual method.- 8.2.3 The minimal correction method.- 8.2.4 The minimal error method.- 8.2.5 A sample application of two-level methods.- 8.3 Three-level conjugate-direction methods.- 8.3.1 The choice of the iterative parameters. An estimate of the convergence rate.- 8.3.2 Formulas for the iterative parameters. The three-level iterative scheme.- 8.3.3 Variants of the computational formulas.- 8.4 Examples of the three-level methods.- 8.4.1 Special cases of the conjugate-direction methods.- 8.4.2 Locally optimal three-level methods.- 8.5 Accelerating the convergence of two-level methods in the self-adjoint case.- 8.5.1 An algorithm for the acceleration process.- 8.5.2 An estimate of the effectiveness.- 8.5.3 An example.- 9 Triangular Iterative Methods.- 9.1 The Gauss-Seidel method.- 9.1.1 The iterative scheme for the method.- 9.1.2 Sample applications of the method.- 9.1.3 Sufficient conditions for convergence.- 9.2 The successive over-relaxation method.- 9.2.1 The iterative scheme. Sufficient conditions for covergence.- 9.2.2 The choice of the iterative parameter.- 9.2.3 An estimate of the spectral radius.- 9.2.4 A Dirichlet difference problem for Poisson¿s equation in a rectangle.- 9.2.5 A Dirichlet difference problem for an elliptic equation with variable coefficients.- 9.3 Triangular methods.- 9.3.1 The iterative scheme.- 9.3.2 An estimate of the convergence rate.- 9.3.3 The choice of the iterative parameter.- 9.3.4 An estimate for the convergence rates of the Gauss-Seidel and relaxation methods.- 10 The Alternate-Triangular Method.- 10.1 The general theory of the method.- 10.1.1 The iterative scheme.- 10.1.2 Choice of the iterative parameters.- 10.1.3 A method for finding and .- 10.1.4 A Dirichlet difference problem for Poisson¿s equation in a rectangle.- 10.2 Boundary-value difference problems for elliptic equations in a rectangle.- 10.2.1 A Dirichlet problem for an equation with variable coefficients.- 10.2.2 A modified alternate-triangular method.- 10.2.3 A comparison of the variants of the method.- 10.2.4 A boundary-value problem of the third kind.- 10.2.5 A Dirichlet difference problem for an equation with mixed derivatives.- 10.3 The alternate-triangular method for elliptic equations in arbitrary regions.- 10.3.1 The statement of the difference problem.- 10.3.2 The construction of an alternate-triangular method.- 10.3.3 A Dirichlet problem for Poisson¿s equation in an arbitrary region.- 11 The Alternating-Directions Method.- 11.1 The alternating-directions method in the commutative case.- 11.1.1 The i.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Numerical Methods for Grid Equations | Volume II Iterative Methods | E. S. Nikolaev (u. a.) | Taschenbuch | xvi | Englisch | 2011 | Birkhäuser Basel | EAN 9783034899239 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New.
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The finite-difference solution of mathematical-physics differential equations is carried out in two stages: 1) the writing of the difference scheme (a differ ence approximation to the differential equation on a grid), 2) the computer solution of the difference equations, which are written in the form of a high order system of linear algebraic equations of special form (ill-conditioned, band-structured). Application of general linear algebra methods is not always appropriate for such systems because of the need to store a large volume of information, as well as because of the large amount of work required by these methods. For the solution of difference equations, special methods have been developed which, in one way or another, take into account special features of the problem, and which allow the solution to be found using less work than via the general methods. This work is an extension of the book Difference M ethod3 for the Solution of Elliptic Equation3 by A. A. Samarskii and V. B. Andreev which considered a whole set of questions connected with difference approximations, the con struction of difference operators, and estimation of the ~onvergence rate of difference schemes for typical elliptic boundary-value problems. Here we consider only solution methods for difference equations. The book in fact consists of two volumes.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The finite-difference solution of mathematical-physics differential equations is carried out in two stages: 1) the writing of the difference scheme (a differ ence approximation to the differential equation on a grid), 2) the computer solution of the difference equations, which are written in the form of a high order system of linear algebraic equations of special form (ill-conditioned, band-structured). Application of general linear algebra methods is not always appropriate for such systems because of the need to store a large volume of information, as well as because of the large amount of work required by these methods. For the solution of difference equations, special methods have been developed which, in one way or another, take into account special features of the problem, and which allow the solution to be found using less work than via the general methods. This work is an extension of the book Difference M ethod3 for the Solution of Elliptic Equation3 by A. A. Samarskii and V. B. Andreev which considered a whole set of questions connected with difference approximations, the con struction of difference operators, and estimation of the ~onvergence rate of difference schemes for typical elliptic boundary-value problems. Here we consider only solution methods for difference equations. The book in fact consists of two volumes.
Zustand: New. Translator(s): Nash, S. G. Num Pages: 242 pages, biography. BIC Classification: PBF; PBKJ. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 254 x 178 x 17. Weight in Grams: 711. . 1988. Hardback. . . . . Books ship from the US and Ireland.