EUR 15,67
Anzahl: 1 verfügbar
In den WarenkorbZustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. Clean from markings. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1000grams, ISBN:1586033352.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 127,08
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Radiation Effects in Solids | Kurt E Sickafus (u. a.) | Taschenbuch | ix | Englisch | 2007 | Springer | EAN 9781402052941 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Englisch
Verlag: Springer Netherlands, Springer Netherlands, 2007
ISBN 10: 1402052944 ISBN 13: 9781402052941
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains proceedings of the NATO Advanced Study nd Institute (ASI): The 32 Course of the International School of Solid State Physics entitled Radiation Effects in Solids, held in Erice, Sicily, Italy, July 17-29, 2004, at the Ettore Majorana Centre for Scientific Culture (EMCSC). The Course had 83 participants (68 students and 15 instructors) representing 23 countries. The purpose of this Course was to provide ASI students with a comprehensive overview of fundamental principles and relevant technical issues associated with the behavior of solids exposed to high-energy radiation. These issues are important to the development of materials for existing fission reactors or future fusion and advanced reactors for energy production; to the development of electronic devices such as high-energy detectors; and to the development of novel materials for electronic and photonic applications (particularly on the nanoscale). The Course covered a broad range of topics, falling into three general categories: Radiation Damage Fundamentals Energetic particles and energy dissipation Atomic displacements and cascades Damage evolution Defect aggregation Microstructural evolution Material Dependent Radiation Damage Phenomena (metals, alloys, semiconductors, intermetallics, ceramics, polymers, biomaterials) Atomic and microstructural effects (e.g., point defects, color centers, extended defects, dislocations, voids, bubbles, colloids, phase transformations, amorphization) Macroscopic phenomena (e.g., swelling, embrittlement, cracking, thermal conductivity degradation) vii viii Preface Special Topics Swift ion irradiation effects Ion beam modification of materials Nanostructure design via irradiation Nuclear fuels and waste forms Radiation detectors, dosimeters, phosphors, luminescent materials, etc.