Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 38,70
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 472 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Verlag: Berlin : Springer New York - Berlin : Springer Berlin, 2007
ISBN 10: 0387743162 ISBN 13: 9780387743165
Sprache: Englisch
Anbieter: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Deutschland
Erstausgabe
Zustand: Wie neu. FirstEdition. X, 470 S. FRISCHES, SEHR schönes Exemplar der ERSTAUSGABE. VERY fresh copy. As new. ( We offer a lot of books on PHYSICS and MATHEMATICS on stock in EXCELLENT shape). Sprache: Englisch Gewicht in Gramm: 700 Originalpappband. / Wrappers 24 cm.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Stochastic Ordinary and Stochastic Partial Differential Equations | Transition from Microscopic to Macroscopic Equations | Peter Kotelenez | Taschenbuch | x | Englisch | 2014 | Springer US | EAN 9781489986580 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 155,87
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 458 pages. 9.25x6.25x1.00 inches. In Stock.
Verlag: Springer New York, Springer New York Dez 2007, 2007
ISBN 10: 0387743162 ISBN 13: 9780387743165
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, ¿at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ¿ Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesoscopic level is probabilistic in nature and many models may be faithfully described by stochastic 3 ordinary and stochastic partial differential equations (SODEs and SPDEs), where the latter are de ned on a continuum. The macroscopic level is described by ti- dependent partial differential equations (PDE¿s) and its generalization and simpl- cations. In our mathematical framework we talk of particles instead of atoms and mo- cules. The transition from the microscopic description to a mesoscopic (i. e.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 472 pp. Englisch.
Verlag: Springer New York, Springer New York, 2014
ISBN 10: 1489986588 ISBN 13: 9781489986580
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, 'at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ' Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesoscopic level is probabilistic in nature and many models may be faithfully described by stochastic 3 ordinary and stochastic partial differential equations (SODEs and SPDEs), where the latter are de ned on a continuum. The macroscopic level is described by ti- dependent partial differential equations (PDE's) and its generalization and simpl- cations. In our mathematical framework we talk of particles instead of atoms and mo- cules. The transition from the microscopic description to a mesoscopic (i. e.
Verlag: Springer New York, Springer US, 2007
ISBN 10: 0387743162 ISBN 13: 9780387743165
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, 'at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ' Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesoscopic level is probabilistic in nature and many models may be faithfully described by stochastic 3 ordinary and stochastic partial differential equations (SODEs and SPDEs), where the latter are de ned on a continuum. The macroscopic level is described by ti- dependent partial differential equations (PDE's) and its generalization and simpl- cations. In our mathematical framework we talk of particles instead of atoms and mo- cules. The transition from the microscopic description to a mesoscopic (i. e.