Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 62 SOR 9780387954400 Sprache: Englisch Gewicht in Gramm: 1235.
Sprache: Englisch
Verlag: Materials Research Society, 2011
ISBN 10: 1605112747 ISBN 13: 9781605112749
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Sprache: Englisch
Verlag: Cambridge University Press, 2011
ISBN 10: 1605112747 ISBN 13: 9781605112749
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 81,63
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 240 Illus.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 85,02
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 278 pages. 9.25x6.10x0.87 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 152,96
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 554 pages. 9.00x6.00x1.25 inches. In Stock.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2011
ISBN 10: 3642744893 ISBN 13: 9783642744891
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Developments in statistics and computing as well as their application to genetic improvement of livestock gained momentum over the last 20 years. This text reviews and consolidates the statistical foundations of animal breeding. This text will prove useful as a reference source to animal breeders, quantitative geneticists and statisticians working in these areas. It will also serve as a text in graduate courses in animal breeding methodology with prerequisite courses in linear models, statistical inference and quantitative genetics.
Sprache: Englisch
Verlag: Springer New York, Springer US, 2010
ISBN 10: 1441929975 ISBN 13: 9781441929976
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments.
Sprache: Englisch
Verlag: Springer New York, Springer US, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments.