Verlag: Morgan & Claypool Publishers, 2009
ISBN 10: 1598296922 ISBN 13: 9781598296921
Sprache: Englisch
Anbieter: Better World Books: West, Reno, NV, USA
EUR 28,45
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. Used book that is in clean, average condition without any missing pages.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 34,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 37,52
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 9.25x7.51 inches. In Stock.
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 67,22
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. 2009. Paperback. . . . . . Books ship from the US and Ireland.
Verlag: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 38,50
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer .
Verlag: Springer Nature Switzerland, Springer International Publishing Jun 2009, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 35,30
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / ConclusionSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch.
Verlag: Springer International Publishing, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 35,30
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion.