Anbieter: Antiquariaat Ovidius, Bredevoort, Niederlande
Zustand: Gebraucht / Used. Paperback. Good. Xiv,353pp.
Verlag: Bucuresti - 1984, 1984
Anbieter: Sylvain Paré, Montolieu, Frankreich
Ed. Tehnica, Bucuresti - 1984, in-8, broché, 352 pages Bon état - Pour les envois hors de France, la tafication «livre & brochure» pour les frais de port a disparue.Les frais de port annoncés correspondent à une moyenne. Ils seront calculés au plus juste en fonction du poids de votre article.
EUR 38,55
Anzahl: 1 verfügbar
In den WarenkorbZustand: Sehr gut. Zustand: Sehr gut | Seiten: 272 | Sprache: Englisch | Produktart: Bücher | Labor omnia vincit improbus. VIRGIL, Georgica I, 144-145. In the first part of his Theoria combinationis observationum erroribus min imis obnoxiae, published in 1821, Carl Friedrich Gauss [Gau80, p.10] deduces a Chebyshev-type inequality for a probability density function, when it only has the property that its value always decreases, or at least does l not increase, if the absolute value of x increases . One may therefore conjecture that Gauss is one of the first scientists to use the property of 'single-humpedness' of a probability density function in a meaningful probabilistic context. More than seventy years later, zoologist W.F.R. Weldon was faced with 'double humpedness'. Indeed, discussing peculiarities of a population of Naples crabs, possi bly connected to natural selection, he writes to Karl Pearson (E.S. Pearson [Pea78, p.328]): Out of the mouths of babes and sucklings hath He perfected praise! In the last few evenings I have wrestled with a double humped curve, and have overthrown it. Enclosed is the diagram. If you scoff at this, I shall never forgive you. Not only did Pearson not scoff at this bimodal probability density function, he examined it and succeeded in decomposing it into two 'single-humped curves' in his first statistical memoir (Pearson [Pea94]).
EUR 38,55
Anzahl: 1 verfügbar
In den WarenkorbZustand: Sehr gut. Zustand: Sehr gut | Seiten: 272 | Sprache: Englisch | Produktart: Bücher | Labor omnia vincit improbus. VIRGIL, Georgica I, 144-145. In the first part of his Theoria combinationis observationum erroribus min imis obnoxiae, published in 1821, Carl Friedrich Gauss [Gau80, p.10] deduces a Chebyshev-type inequality for a probability density function, when it only has the property that its value always decreases, or at least does l not increase, if the absolute value of x increases . One may therefore conjecture that Gauss is one of the first scientists to use the property of 'single-humpedness' of a probability density function in a meaningful probabilistic context. More than seventy years later, zoologist W.F.R. Weldon was faced with 'double humpedness'. Indeed, discussing peculiarities of a population of Naples crabs, possi bly connected to natural selection, he writes to Karl Pearson (E.S. Pearson [Pea78, p.328]): Out of the mouths of babes and sucklings hath He perfected praise! In the last few evenings I have wrestled with a double humped curve, and have overthrown it. Enclosed is the diagram. If you scoff at this, I shall never forgive you. Not only did Pearson not scoff at this bimodal probability density function, he examined it and succeeded in decomposing it into two 'single-humped curves' in his first statistical memoir (Pearson [Pea94]).
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 152,94
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 372 pages. 9.00x6.25x0.83 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 233,61
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 251 pages. 10.00x6.75x1.00 inches. In Stock.