Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland
Zustand: Gut. Auflage: 2002. 438 Seiten ex Library Book aus einer wissenschafltichen Bibliothek Altersfreigabe FSK ab 0 Jahre Sprache: Englisch Gewicht in Gramm: 969 23,6 x 15,2 x 2,5 cm, Gebundene Ausgabe.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. 438 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 9780387986524 Sprache: Englisch Gewicht in Gramm: 550.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 114,36
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 460 Illus.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Discrepancy of Signed Measures and Polynomial Approximation | Vladimir V. Andrievskii (u. a.) | Taschenbuch | xiv | Englisch | 2010 | Humana | EAN 9781441931467 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In many situations in approximation theory the distribution of points in a given set is of interest. For example, the suitable choiee of interpolation points is essential to obtain satisfactory estimates for the convergence of interpolating polynomials. Zeros of orthogonal polynomials are the nodes for Gauss quadrat ure formulas. Alternation points of the error curve char acterize the best approximating polynomials. In classieal complex analysis an interesting feature is the location of zeros of approximants to an analytie function. In 1918 R. Jentzsch [91] showed that every point of the circle of convergence of apower series is a limit point of zeros of its partial sums. This theorem of Jentzsch was sharpened by Szegö [170] in 1923. He proved that for apower series with finite radius of convergence there is an infinite sequence of partial sums, the zeros of whieh are 'equidistributed' with respect to the angular measure. In 1929 Bernstein [27] stated the following theorem. Let f be a positive continuous function on [-1, 1]; if almost all zeros of the polynomials of best 2 approximation to f (in a weighted L -norm) are outside of an open ellipse c with foci at -1 and 1, then f has a continuous extension that is analytic in c.