Well-Posedness of Parabolic Difference Equations (Operator Theory: Advances and Applications)

Ashyralyev, A.; Sobolevskii, P.E.

ISBN 10: 3764350245 ISBN 13: 9783764350246
Verlag: Birkhäuser Basel, 1994
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783764350246_new

Diesen Artikel melden

Inhaltsangabe:

1 The Abstract Cauchy Problem.- 1. Well-Posedness of the Differential Cauchy Problem in C(E).- 1. The Cauchy problem in a Banach space E. Definition of well-posedness in C(E).- 2. Examples of well-posed and ill-posed problems in C(E).- 3. The homogeneous equation. Strongly continuous semigroups.- 4. The nonhomogeneous equation. Analytic semigroups.- 5. Well-posedness in C(E) of the general Cauchy problem.- 2. Well-Posedness of the Cauchy Problem inC0?(E).- 1. The homogeneous problem. The space C0?(E).- 2. Well-posedness in C0?(E) of the general Cauchy problem.- 3. Well-Posedness of the Cauchy Problem in Lp(E).- 1. Definition of the well-posedness of the Cauchy problem in LP(E).- 2. A formula for the solution of the Cauchy problem in Lp(E).- 3. Spaces of initial data.- 4. The values of the solution of the Cauchy problem in Lp(E) for fixed t.- 5. The coercivity inequality for the solutions in Lp(E) of the general problem (1.1).- 4. Well-Posedness of the Cauchy Problem in Lp(E?,Q).- 5. Well-Posedness of the Cauchy Problem in Spaces of Smooth Functions.- 1. The space C0ß,?(E). The nonhomogeneous problem.- 2. Well-posedness of the general problem.- 3. Semigroup estimates.- 4. The coercivity inequality for the general problem.- 2 The Rothe Difference Scheme.- 0. Stability of the Difference Problem.- 1. The difference problem.- 2. Banach spaces of grid functions.- 3. The operator equation in ?(E). Definition of the stability of the difference scheme.- 4. Stability of the difference scheme.- 1. Well-Posedness of the Difference Problem in C(E).- 1. The homogeneous difference problem.- 2. The nonhomogeneous problem. A real-field criterion for analyticity.- 3. An almost coercive inequality in C(E).- 2. Well-Posedness of the Difference Problem in C0?(E).- 3. Well-Posedness of the Difference Problem in Lp(E).- 1. Definition of the well-posedness of the difference problem in LP(E).- 2. Spaces of initial data.- 3. The coercivity inequality for the solutions in LP(E) of the general problem (0.6).- 4. Well-Posedness of the Difference Problem in Lp(E?,Q).- 1. Strongly positive operators and fractional spaces.- 2. Well-posedness of the difference problem in Lp(E’?,q).- 5. Well-Posedness of the Difference Problem in Difference Analogues of Spaces of Smooth Functions.- 1. The space CQ’(E). The nonhomogeneous difference problem.- 2. Well-posedness of the general difference problem.- 3. Estimates for powers of the resolvent.- 4. The coercivity inequality for the general problem.- 3 PadÉ Difference Schemes.- 0. Stability of the Difference Problem.- 1. Padé approximants of the function e-z.- 2. Difference schemes of Padé class.- 1. Well-Posedness of the Difference Problem in C(E).- 1. The homogeneous problem.- 2. The nonhomogeneous problem.- 3. Sufficient conditions for almost-well-posedness. A real-field criterion for analyticity.- 4. Estimates of powers of the operator step.- 2. Well-Posedness of the Difference Problem in C0?(E).- 1. The case of a general space C0?(E).- 2. The case of the special space C0? (E).- 3. Well-Posedness of the Difference Problem in Lp(E).- 1. Definition of the well-posedness of the difference problem in Lp(E). Stability of the difference problem.- 2. Spaces of initial data. Well-posedness of the difference problem.- 3. Estimates of powers of the operator step.- 4. Well-Posedness of the Difference Problem in Lp(E’?,Q).- 1. Stability of the difference problem.- 2. Well-posedness of the difference problem.- 5. Well-Posedness of the Difference Problem in Difference Analogues of Spaces of Smooth Functions.- 1. Well-posedness of the difference problem in C0ß,? (E).- 2. Estimates of powers of the operator step. The coercivity inequality for the general problem.- 4 Difference Schemes for Parabolic Equations.- 1. Elliptic Difference Operators with Constant Coefficients.- 1. The definition of an elliptic difference operator and properties of its symbol.- 2. A formula for the solution of the resolvent equation.- 3. Point estimat

Reseña del editor: A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on Padé approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Well-Posedness of Parabolic Difference ...
Verlag: Birkhäuser Basel
Erscheinungsdatum: 1994
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Ashyralyev, A. /Sobolevskii, P.E.
Verlag: Springer Basel, 1994
ISBN 10: 3764350245 ISBN 13: 9783764350246
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. Zustand: Gut | Seiten: 349 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 97299/203

Verkäufer kontaktieren

Gebraucht kaufen

EUR 19,77
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

A yral'ev, Allaberen:
Verlag: Basel, Birkhäuser, 1994
ISBN 10: 3764350245 ISBN 13: 9783764350246
Gebraucht Hardcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. XIV, 349 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03652 3764350245 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2489573

Verkäufer kontaktieren

Gebraucht kaufen

EUR 21,50
EUR 16,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

A. Ashyralyev
ISBN 10: 3764350245 ISBN 13: 9783764350246
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on Padé approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations. Artikel-Nr. 9783764350246

Verkäufer kontaktieren

Neu kaufen

EUR 91,43
EUR 63,90 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ashyralyev, A.|Sobolevskii, P. E.
ISBN 10: 3764350245 ISBN 13: 9783764350246
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones hence, their construction and investigation for. Artikel-Nr. 908772459

Verkäufer kontaktieren

Neu kaufen

EUR 106,15
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

A. Ashyralyev/ P.E. Sobolevskii
Verlag: Birkhäuser Basel, 1994
ISBN 10: 3764350245 ISBN 13: 9783764350246
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1st edition. 349 pages. German language. 9.61x6.69x0.81 inches. In Stock. Artikel-Nr. x-3764350245

Verkäufer kontaktieren

Neu kaufen

EUR 140,00
EUR 14,24 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb