WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles: 4th International Workshop, Edmonton, Canada, July 23, 2002, Revised Papers (Volume 2703)

. Ed(s): Zaiane, Osmar R.; Srivastava, Jaideep; Spiliopoulou, Myra; Masand, Brij

ISBN 10: 3540203044 ISBN 13: 9783540203049
Verlag: Springer/Sci-Tech/Trade, 2003
Neu Softcover

Verkäufer Kennys Bookstore, Olney, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 9. Oktober 2009


Beschreibung

Beschreibung:

This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Mining Web Data, WEBKDD 2002, held in Edmonton, Canada, in July 2002.The 10 revised full papers presented together with a detailed preface went through two rounds of reviewing and improvement and were selected from 23 submissions. Editor(s): Zaiane, Osmar R.; Srivastava, Jaideep; Spiliopoulou, Myra; Masand, Brij. Series: Lecture Notes in Computer Science. Num Pages: 183 pages, biography. BIC Classification: UDB. Category: (G) General (US: Trade); (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 233 x 155 x 10. Weight in Grams: 283. . 2003. 2003rd Edition. paperback. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9783540203049

Diesen Artikel melden

Inhaltsangabe:

1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.

Reseña del editor: 1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: WEBKDD 2002 - Mining Web Data for ...
Verlag: Springer/Sci-Tech/Trade
Erscheinungsdatum: 2003
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Unbekannt
ISBN 10: 3540203044 ISBN 13: 9783540203049
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 1457126/202

Verkäufer kontaktieren

Gebraucht kaufen

EUR 42,18
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Osmar R. Zaiane
ISBN 10: 3540203044 ISBN 13: 9783540203049
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e ort in data mining, Web usage data presents further challenges based on the di culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di erences between sessions, and to be able to segment online users into relevant groups.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Artikel-Nr. 9783540203049

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Osmar R. Zaiane
ISBN 10: 3540203044 ISBN 13: 9783540203049
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e ort in data mining, Web usage data presents further challenges based on the di culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di erences between sessions, and to be able to segment online users into relevant groups. Artikel-Nr. 9783540203049

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2003
ISBN 10: 3540203044 ISBN 13: 9783540203049
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783540203049_new

Verkäufer kontaktieren

Neu kaufen

EUR 58,33
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb