Understanding High-Dimensional Spaces (SpringerBriefs in Computer Science)

Skillicorn, David B.

ISBN 10: 3642333974 ISBN 13: 9783642333972
Verlag: Springer, 2012
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783642333972_new

Diesen Artikel melden

Inhaltsangabe:

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect.

There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions.

The book will be of value to practitioners, graduate students and researchers.

Über die Autorin bzw. den Autor: Prof. David B. Skillicorn is a professor in the School of Computing at Queen's University in Kingston, Ontario; he is also an adjunct professor in the Mathematics and Computer Science Department of the Royal Military College of Canada. His research interests include data mining, knowledge discovery, machine learning, parallel and distributed computing, intelligence and security informatics, and collaborative research.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Understanding High-Dimensional Spaces (...
Verlag: Springer
Erscheinungsdatum: 2012
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

David B. Skillicorn
Verlag: Springer-Verlag GmbH, 2012
ISBN 10: 3642333974 ISBN 13: 9783642333972
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Understanding High-Dimensional Spaces | David B. Skillicorn | Taschenbuch | ix | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642333972 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 106238901

Verkäufer kontaktieren

Neu kaufen

EUR 49,15
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

David B. Skillicorn
ISBN 10: 3642333974 ISBN 13: 9783642333972
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect.There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions.The book will be of value to practitioners, graduate students and researchers.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. Artikel-Nr. 9783642333972

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

David B. Skillicorn
ISBN 10: 3642333974 ISBN 13: 9783642333972
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. Artikel-Nr. 9783642333972

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
EUR 60,98 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Skillicorn, David B.
ISBN 10: 3642333974 ISBN 13: 9783642333972
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2012 edition. 117 pages. 9.21x0.71x6.18 inches. In Stock. Artikel-Nr. x-3642333974

Verkäufer kontaktieren

Neu kaufen

EUR 74,68
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb