Understanding Computational Bayesian Statistics
William M. Bolstad
Verkauft von Kennys Bookstore, Olney, MD, USA
AbeBooks-Verkäufer seit 9. Oktober 2009
Neu - Hardcover
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Kennys Bookstore, Olney, MD, USA
AbeBooks-Verkäufer seit 9. Oktober 2009
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenA hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. Series: Wiley Series in Computational Statistics. Num Pages: 336 pages, Illustrations. BIC Classification: PBT. Category: (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 241 x 153 x 25. Weight in Grams: 604. . 2009. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland.
Bestandsnummer des Verkäufers V9780470046098
Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model.
The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include:
Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages.
Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.
WILLIAM M. BOLSTAD, PHD, is Senior Lecturer in the Department of Statistics at The University of Waikato (New Zealand). Dr. Bolstad's research interests include Bayesian statistics, MCMC methods, recursive estimation techniques, multiprocess dynamic time series models, and forecasting. He is the author of Introduction to Bayesian Statistics, Second Edition, also published by Wiley.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We guarantee the condition of every book as it's described on the Abebooks websites.
If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date.
For any queries please use the contact seller link or send an email to books@kennys.ie
Conor Kenny
All books securely packaged. Some books ship from Ireland.