Uncertainty Modeling for Data Mining
Tang Yongchuan Qin Zengchang
Verkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Neu - Hardcover
Zustand: Neu
Anzahl: 4 verfügbar
In den Warenkorb legenVerkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Zustand: Neu
Anzahl: 4 verfügbar
In den Warenkorb legenpp. 420 70 Illus.
Bestandsnummer des Verkäufers 135050798
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.
Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery