CHAPTER 1
EUCLID AND THE TRADITIONS ABOUT HIM.
As in the case of the other great mathematicians of Greece, so in Euclid's case, we have only the most meagre particulars of the life and personality of the man.
Most of what we have is contained in the passage of Proclus' summary relating to him, which is as follows:
"Not much younger than these (sc. Hermotimus of Colophon and Philippus of Medma) is Euclid, who put together the Elements, collecting many of Eudoxus' theorems, perfecting many of Theaetetus', and also bringing to irrefragable demonstration the things which were only somewhat loosely proved by his predecessors. This man lived in the time of the first Ptolemy. For Archimedes, who came immediately after the first (Ptolemy), makes mention of Euclid: and, further, they say that Ptolemy once asked him if there was in geometry any shorter way than that of the elements, and he answered that there was no royal road to geometry. He is then younger than the pupils of Plato but older than Eratosthenes and Archimedes; for the latter were contemporary with one another, as Eratosthenes somewhere says."
This passage shows that even Proclus had no direct knowledge of Euclid's birthplace or of the date of his birth or death. He proceeds by inference. Since Archimedes lived just after the first Ptolemy, and Archimedes mentions Euclid, while there is an anecdote about some Ptolemy and Euclid, therefore Euclid lived in the time of the first Ptolemy.
We may infer then from Proclus that Euclid was intermediate between the first pupils of Plato and Archimedes. Now Plato died in 347/6, Archimedes lived 287–212, Eratosthenes c. 284–204 B.C. Thus Euclid must have flourished c. 300 B.C., which date agrees well with the fact that Ptolemy reigned from 306 to 283 B.C.
It is most probable that Euclid received his mathematical training in Athens from the pupils of Plato; for most of the geometers who could have taught him were of that school, and it was in Athens that the older writers of elements, and the other mathematicians on whose works Euclid's Elements depend, had lived and taught. He may himself have been a Platonist, but this does not follow from the statements of Proclus on the subject. Proclus says namely that he was of the school of Plato and in close touch with that philosophy. But this was only an attempt of a New Platonist to connect Euclid with his philosophy, as is clear from the next words in the same sentence, "for which reason also he set before himself, as the end of the whole Elements, the construction of the so-called Platonic figures." It is evident that it was only an idea of Proclus' own to infer that Euclid was a Platonist because his Elements end with the investigation of the five regular solids, since a later passage shows him hard put to it to reconcile the view that the construction of the five regular solids was the end and aim of the Elements with the obvious fact that they were intended to supply a foundation for the study of geometry in general, "to make perfect the understanding of the learner in regard to the whole of geometry." To get out of the difficulty he says that, if one should ask him what was the aim ([TEXT NOT REPRODUCIBLE IN ASCII]) of the treatise, he would reply by making a distinction between Euclid's intentions (1) as regards the subjects with which his investigations are concerned, (2) as regards the learner, and would say as regards (1) that "the whole of the geometer's argument is concerned with the cosmic figures." This latter statement is obviously incorrect. It is true that Euclid's Elements end with the construction of the five regular solids; but the planimetrical portion has no direct relation to them, and the arithmetical no relation at all; the propositions about them are merely the conclusion of the stereometrical division of the work.
One thing is however certain, namely that Euclid taught, and founded a school, at Alexandria. This is clear from the remark of Pappus about Apollonius: "he spent a very long time with the pupils of Euclid at Alexandria, and it was thus that he acquired such a scientific habit of thought."
It is in the same passage that Pappus makes a remark which might, to an unwary reader, seem to throw some light on the personality of Euclid. He is speaking about Apollonius' preface to the first book of his Conics, where he says that Euclid had not completely worked out the synthesis of the "three- and four-line locus," which in fact was not possible without some theorems first discovered by himself. Pappus says on this: "Now Euclid—regarding Aristaeus as deserving credit for the discoveries he had already made in conics, and without anticipating him or wishing to construct anew the same system (such was his scrupulous fairness and his exemplary kindliness towards all who could advance mathematical science to however small an extent), being moreover in no wise contentious and, though exact, yet no braggart like the other [Apollonius] —wrote so much about the locus as was possible by means of the conics of Aristaeus, without claiming completeness for his demonstrations." It is however evident, when the passage is examined in its context, that Pappus is not following any tradition in giving this account of Euclid: he was offended by the terms of Apollonius' reference to Euclid, which seemed to him unjust, and he drew a fancy picture of Euclid in order to show Apollonius in a relatively unfavourable light.
Another story is told of Euclid which one would like to believe true. According to Stobaeus, "some one who had begun to read geometry with Euclid, when he had learnt the first theorem, asked Euclid, 'But what shall I get by-learning these things?' Euclid called his slave and said 'Give him threepence, since he must make gain out of what he learns.'"
In the middle ages most translators and editors spoke of Euclid as Euclid of Megara. This description arose out of a confusion between our Euclid and the philosopher Euclid of Megara who lived about 400 B.C. The first trace of this confusion appears in Valerius Maximus (in the time of Tiberius) who says that Plato, on being appealed to for a solution of the problem of doubling the cubical altar, sent the inquirers to "Euclid the geometer." There is no doubt about the reading, although an early commentator on Valerius Maximus wanted to correct "Eucliden" into "Eudoxum," and this correction is clearly right. But, if Valerius Maximus took Euclid the geometer for a contemporary of Plato, it could only be through confusing him with Euclid of Megara. The first specific reference to Euclid as Euclid of Megara belongs to the 14th century,...