Verkäufer
Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 25. März 2015
In. Bestandsnummer des Verkäufers ria9781402000997_new
This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini mum tree) was first proposed by Gauss.
Titel: Steiner Trees in Industry (Combinatorial ...
Verlag: Springer
Erscheinungsdatum: 2001
Einband: Hardcover
Zustand: New
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini mum tree) was first proposed by Gauss. Artikel-Nr. 9781402000997
Anzahl: 2 verfügbar