Short-Term Load Forecasting by Artificial Intelligent Technologies
Verkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenpp. 444.
Bestandsnummer des Verkäufers 370989804
In last few decades, short-term load forecasting (STLF) has been one of the most important research issues for achieving higher efficiency and reliability in power system operation, to facilitate the minimization of its operation cost by providing accurate input to day-ahead scheduling, contingency analysis, load flow analysis, planning, and maintenance of power systems. There are lots of forecasting models proposed for STLF, including traditional statistical models (such as ARIMA, SARIMA, ARMAX, multi-variate regression, Kalman filter, exponential smoothing, and so on) and artificial-intelligence-based models (such as artificial neural networks (ANNs), knowledge-based expert systems, fuzzy theory and fuzzy inference systems, evolutionary computation models, support vector regression, and so on).
Recently, due to the great development of evolutionary algorithms (EA) and novel computing concepts (e.g., quantum computing concepts, chaotic mapping functions, and cloud mapping process, and so on), many advanced hybrids with those artificial-intelligence-based models are also proposed to achieve satisfactory forecasting accuracy levels. In addition, combining some superior mechanisms with an existing model could empower that model to solve problems it could not deal with before; for example, the seasonal mechanism from the ARIMA model is a good component to be combined with any forecasting models to help them to deal with seasonal problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery
Bestellmenge | 14 bis 45 Werktage | 5 bis 10 Werktage |
---|---|---|
Erster Artikel | EUR 7.45 | EUR 11.30 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.