The Robust Maximum Principle
Alexander S. Poznyak
Verkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Neu - Hardcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenNeuware -Both refining and extending previous publications by the authors, the material in thismonograph has been class-tested in mathematical institutions throughout the world. Covering some of the key areas of optimal control theory (OCT)¿a rapidly expanding field that has developed to analyze the optimal behavior of a constrained process over time¿the authors use new methods to set out a version of OCT¿s more refined¿maximum principle¿ designed to solve the problem of constructing optimal control strategies for uncertain systems where some parameters are unknown. Known as a ¿min-max¿ problem, this type of difficulty occurs frequently when dealing with finite uncertain sets.The text begins with a standalone section that reviews classical optimal control theory. Moving on to examine the tent method in detail, the book thenpresents its core material, which is a more robust maximum principle for both deterministic and stochastic systems. The results obtainedhave applicationsin production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games.Using powerful new tools in optimal control theory, this book explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 456 pp. Englisch.
Bestandsnummer des Verkäufers 9780817681517
Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field, the authors use new methods to set out a version of OCT's more refined 'maximum principle.' The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games.
This book explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.
Both refining and extending previous publications by the authors, the material in this monograph has been class-tested in mathematical institutions throughout the world. Covering some of the key areas of optimal control theory (OCT)--a rapidly expanding field that has developed to analyze the optimal behavior of a constrained process over time--the authors use new methods to set out a version of OCT's more refined 'maximum principle' designed to solve the problem of constructing optimal control strategies for uncertain systems where some parameters are unknown. Referred to as a 'min-max' problem, this type of difficulty occurs frequently when dealing with finite uncertain sets.
The text begins with a standalone section that reviews classical optimal control theory, covering the principal topics of the maximum principle and dynamic programming and considering the important sub-problems of linear quadratic optimal control and time optimization. Moving on to examine the tent method in detail, the book then presents its core material, which is a more robust maximum principle for both deterministic and stochastic systems. The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games.
Key features and topics include:
* A version of the tent method in Banach spaces
* How to apply the tent method to a generalization of the Kuhn-Tucker Theorem as well as the Lagrange Principle for infinite-dimensional spaces
* A detailed consideration of the min-max linear quadratic (LQ) control problem
* The application of obtained results from dynamic programming derivations to multi-model sliding mode control and multi-model differential games
* Two examples, dealing with production planning and reinsurance-dividend management, that illustrate the use of the robust maximum principle in stochastic systems
Usingpowerful new tools in optimal control theory, The Robust Maximum Principle explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.
Bestellmenge | 2 bis 7 Werktage | 2 bis 6 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 3.99 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.