Inhaltsangabe
The construction of the $p$-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(\varphi ,\Gamma )$-modules. Here cyclotomic means that $\Gamma = \mathrm {Gal}(\mathbf{Q}_p(\mu_{p^\infty})/\mathbf{Q}_p)$ is the Galois group of the cyclotomic extension of $\mathbf Q_p$. In order to generalize the $p$-adic local Langlands correspondence to $\mathrm{GL}_{2}(L)$, where $L$ is a finite extension of $\mathbf{Q}_p$, it seems necessary to have at our disposal a theory of Lubin-Tate $(\varphi ,\Gamma )$-modules. Such a generalization has been carried out, to some extent, by working over the $p$-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(\varphi ,\Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$. They study $(\varphi ,\Gamma )$-modules in this setting and relate some of them to what was known previously.
Über die Autorin bzw. den Autor
Laurent Berger, UMPA ENS de Lyon, France, Peter Schneider, Universitat Munster, Munster, Germany
Bingyong Xie, East China Normal University, Shanghai, People's Republic of China
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.