Reram-Based Machine Learning
Hao Yu
Verkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Neu - Hardcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenNeuware - Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML designs onto hardware accelerators.
Bestandsnummer des Verkäufers 9781839530814
The transition towards exascale computing has resulted in major transformations in computing paradigms. The need to analyze and respond to such large amounts of data sets has led to the adoption of machine learning (ML) and deep learning (DL) methods in a wide range of applications.
One of the major challenges is the fetching of data from computing memory and writing it back without experiencing a memory-wall bottleneck. To address such concerns, in-memory computing (IMC) and supporting frameworks have been introduced. In-memory computing methods have ultra-low power and high-density embedded storage. Resistive Random-Access Memory (ReRAM) technology seems the most promising IMC solution due to its minimized leakage power, reduced power consumption and smaller hardware footprint, as well as its compatibility with CMOS technology, which is widely used in industry.
In this book, the authors introduce ReRAM techniques for performing distributed computing using IMC accelerators, present ReRAM-based IMC architectures that can perform computations of ML and data-intensive applications, as well as strategies to map ML designs onto hardware accelerators.
The book serves as a bridge between researchers in the computing domain (algorithm designers for ML and DL) and computing hardware designers.
Hao Yu is a professor in the School of Microelectronics at Southern University of Science and Technology (SUSTech), China. His main research interests cover energy-efficient IC chip design and mmwave IC design. He is a senior member of IEEE and a member of ACM. He has written several books and holds 20 granted patents. He is a distinguished lecturer of IEEE Circuits and Systems and associate editor of Elsevier Integration, the VLSI Journal, Elsevier Microelectronics Journal, Nature Scientific Reports, ACM Transactions on Embedded Computing Systems and IEEE Transactions on Biomedical Circuits and Systems. He is also a technical program committee member of several IC conferences, including IEEE CICC, BioCAS, A-SSCC, ACM DAC, DATE and ICCAD. He obtained his Ph.D. degree from the EE department at UCLA, USA.
Leibin Ni is a Principle engineer at Huawei Technologies, Shenzhen, China. His research interests include emerging nonvolatile memory platforms, computing in-memory architecture, machine learning applications and low power designs. He is a member of IEEE. He received his Ph.D. from the Nanyang Technological University, Singapore.
Sai Manoj Pudukotai Dinakarrao is an assistant professor in the Department of Electrical and Computer Engineering at George Mason University (GMU), USA. His current research interests include hardware security, adversarial machine learning, Internet of things networks, deep learning in resource-constrained environments, in-memory computing, accelerator design, algorithms, design of self-aware many-core microprocessors and resource management in many-core microprocessors. He is a member of IEEE and ACM. He served as a guest editor to IEEE Design and Test Magazine and reviewer for multiple IEEE and ACM journals. Also, he is a technical program committee member of several CAD conferences, including ACM DAC, DATE, ICCAD, ASP-DAC, ESWEEK and many more. He received a Ph.D. degree in Electrical and Electronic Engineering from the Nanyang Technological University, Singapore.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Allgemeine Geschäftsbedingungen und Kundeninformationen / Datenschutzerklärung
I. Allgemeine Geschäftsbedingungen
§ 1 Grundlegende Bestimmungen
(1) Die nachstehenden Geschäftsbedingungen gelten für alle Verträge, die Sie mit uns als Anbieter (AHA-BUCH GmbH) über die Internetplattformen AbeBooks und/oder ZVAB schließen. Soweit nicht anders vereinbart, wird der Einbeziehung gegebenenfalls von Ihnen verwendeter eigener Bedingungen widersprochen.
(2) Verbraucher im Sinne der nachstehenden Regelungen...
Wir liefern Lagerartikel innerhalb von 24 Stunden nach Erhalt der Bestellung aus.
Barsortimentsartikel, die wir über Nacht geliefert bekommen, am darauffolgenden Werktag.
Unser Ziel ist es Ihnen die Artikel in der ökonomischten und effizientesten Weise zu senden.
Bestellmenge | 30 bis 40 Werktage | 7 bis 14 Werktage |
---|---|---|
Erster Artikel | EUR 62.70 | EUR 72.70 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.