Inhaltsangabe
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications.
The reader will learn:
- The basic physics behind tissue property mapping
- How to implement basic pulse sequences for the quantitative measurement of tissue properties
- The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2*
- The pros and cons for different approaches to mapping perfusion
- The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor
- maps and more complex representations of diffusion
- How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed
- How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance
- Fingerprinting can be used to accelerate or improve tissue property mapping schemes
- How tissue property mapping is used clinically in different organs
- Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds
- Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements
- Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges
- Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Über die Autorinnen und Autoren
Dr. Nicole Seiberlich is an Associate Professor in the Department of Radiology at the University of Michigan in Ann Arbor, and the Director of the Michigan Institute for Imaging Technology and Translation (MIITT). She was previously the Elmer Lincoln Lindseth Associate Professor of Biomedical Engineering at Case Western Reserve University. Dr. Seiberlich received her BS in Chemistry from Yale University (New Haven, CT) and her PhD in Physics from the Universität Würzburg (Würzburg, Germany). Her research focuses on novel data acquisition and signal processing techniques for rapid and quantitative Magnetic Resonance Imaging, with applications in cardiac and abdominal imaging.
Vikas Gulani is the Chair and Fred J. Hodges Professor of Radiology at the University of Michigan. As Chair, his primary goal is to build a compassionate workplace that strives towards excellence. He was previously the Joseph T. Wearn Professor in Radiology, Urology, and Biomedical Engineering and the Director of MRI at Case Western Reserve University and University Hospitals. Dr. Gulani is a physician-scientist interested in MR technology development and clinical translation. His clinical interests include prostate and liver MRI, MR angiography, and in-bore intervention. His scientific interests include relaxometry, diffusion imaging, perfusion, MR microscopy, parallel imaging, rapid acquisitions, and body MRI. His recent work has focused on development and translation of MR Fingerprinting.
Dr. Adrienne Campbell-Washburn is Earl Stadtman Principal Investigator at the MRI Technology Program for the National Heart, Lung, and Blood Institute at the National Institutes of Health. She received her PhD in Medical Physics from University College London.Her research focuses on the development of MRI technology for cardiac, lung and interventional imaging applications. She works on low field MRI technology, advanced MRI acquisitions that leverage non-Cartesian sampling, and reconstruction methods using state-of-the-art computational resources in the clinical environment.
Steven Sourbron holds a Chair in Medical Imaging Physics in the University of Sheffield, UK. He is a theoretical physicist by training, obtained a PhD on perfusion MRI from the Free University of Brussels (Belgium), and performed post-doctoral research in the Ludwig-Maximilian University of Munich (Germany) before taking up a lectureship in the University of Leeds (UK). His research focuses on developing and applying quantitative medical imaging techniques that provide more accurate and more biologically specific assessment of tissue perfusion, function and structure. Much of his current work involves clinical studies on non-invasive assessment of chronic kidney- and liver disease to determine if quantitative MRI can improve prognosis and prediction of treatment effects.
Mariya Doneva is a senior scientist at Philips Research, Hamburg, Germany. She received her BSc and MSc degrees in Physics from the University of Oldenburg in 2006 and 2007, respectively and her PhD degree in Physics from the University of Luebeck in 2010. She was a Research Associate at Electrical Engineering and Computer Sciences department at UC Berkeley between 2015 and 2016. She is a recipient of the Junior Fellow award of the International Society for Magnetic Resonance in Medicine. Her research interests include methods for efficient data acquisition, image reconstruction and quantitative parameter mapping in the context of magnetic resonance imaging.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.