Verkäufer
preigu, Osnabrück, Deutschland
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 5. August 2024
Propriétés caractéristiques d'une fonction variance | Nahla Ben Salah (u. a.) | Taschenbuch | 64 S. | Französisch | 2020 | Éditions universitaires européennes | EAN 9783841731265 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 118345071
Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +\infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart.
Titel: Propriétés caractéristiques d'une fonction ...
Verlag: Éditions universitaires européennes
Erscheinungsdatum: 2020
Einband: Taschenbuch
Zustand: Neu
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 385829103
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 64 pp. Französisch. Artikel-Nr. 9783841731265
Anzahl: 2 verfügbar