The Problem of Integrable Discretization : Hamiltonian Approach
Yuri B. Suris
Verkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenDruck auf Anfrage Neuware - Printed after ordering - The book explores the theory of discrete integrable systems, with an emphasis on the following general problem: how to discretize one or several of independent variables in a given integrable system of differential equations, maintaining the integrability property This question (related in spirit to such a modern branch of numerical analysis as geometric integration) is treated in the book as an immanent part of the theory of integrable systems, also commonly termed as the theory of solitons. Among several possible approaches to this theory, the Hamiltonian one is chosen as the guiding principle. A self-contained exposition of the Hamiltonian (r-matrix, or 'Leningrad') approach to integrable systems is given, culminating in the formulation of a general recipe for integrable discretization of r-matrix hierarchies. After that, a detailed systematic study is carried out for the majority of known discrete integrable systems which can be considered as discretizations of integrable ordinary differential or differential-difference (lattice) equations. This study includes, in all cases, a unified treatment of the correspondent continuous integrable systems as well. The list of systems treated in the book includes, among others: Toda and Volterra lattices along with their numerous generalizations (relativistic, multi-field, Lie-algebraic, etc.), Ablowitz-Ladik hierarchy, peakons of the Camassa-Holm equation, Garnier and Neumann systems with their various relatives, many-body systems of the Calogero-Moser and Ruijsenaars-Schneider type, various integrable cases of the rigid body dynamics. Most of the results are only available from recent journal publications, many of them are new. Thus, the book is a kind of encyclopedia on discrete integrable systems. It unifies the features of a research monograph and a handbook. It is supplied with an extensive bibliography and detailed bibliographic remarks at the end of each chapter. Largely self-contained, it will beaccessible to graduate and post-graduate students as well as to researchers in the area of integrable dynamical systems. Also those involved in real numerical calculations or modelling with integrable systems will find it very helpful.
Bestandsnummer des Verkäufers 9783034894043
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Allgemeine Geschäftsbedingungen und Kundeninformationen / Datenschutzerklärung
I. Allgemeine Geschäftsbedingungen
§ 1 Grundlegende Bestimmungen
(1) Die nachstehenden Geschäftsbedingungen gelten für alle Verträge, die Sie mit uns als Anbieter (AHA-BUCH GmbH) über die Internetplattformen AbeBooks und/oder ZVAB schließen. Soweit nicht anders vereinbart, wird der Einbeziehung gegebenenfalls von Ihnen verwendeter eigener Bedingungen widersprochen.
(2) Verbraucher im Sinne der nachstehenden Regelungen...
Wir liefern Lagerartikel innerhalb von 24 Stunden nach Erhalt der Bestellung aus.
Barsortimentsartikel, die wir über Nacht geliefert bekommen, am darauffolgenden Werktag.
Unser Ziel ist es Ihnen die Artikel in der ökonomischten und effizientesten Weise zu senden.
Bestellmenge | 1 bis 2 Werktage | 1 bis 2 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 4.50 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.