Verkäufer
BooksRun, Philadelphia, PA, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 2. Februar 2016
It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Bestandsnummer des Verkäufers 0262013193-11-1
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.
Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.
Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Über die Autorin bzw. den Autor:
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
Titel: Probabilistic Graphical Models: Principles ...
Verlag: The MIT Press (edition 1)
Erscheinungsdatum: 2009
Einband: Hardcover
Zustand: Good
Auflage: 1.
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,2300grams, ISBN:9780262013192. Artikel-Nr. 3967293
Anzahl: 1 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Artikel-Nr. 0262013193-8-1
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 8790163-75
Anzahl: 1 verfügbar
Anbieter: Buchpark, Maidenhead, Berkshire, Vereinigtes Königreich
Zustand: Very Good. Condition: Very Good, Pages: 1270, Size: 23.6x20.9x5. Artikel-Nr. 5324157/23
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FV-9780262013192
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 1280. Artikel-Nr. 8202898
Anzahl: 3 verfügbar
Anbieter: Wonder Book, Frederick, MD, USA
Zustand: Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. NOT AVAILABLE FOR SHIPMENT OUTSIDE OF THE UNITED STATES. Artikel-Nr. V17A-04500
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Daphne Koller is Professor in the Department of Computer Science at Stanford University.Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.A general framework for constructing and using probab. Artikel-Nr. 5899382
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Hardcover. Zustand: Sehr gut. Gebraucht - Sehr gut Sg - leichte Beschädigungen oder Verschmutzungen, ungelesenes Mängelexemplar, gestempelt - A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.Most tasks require a person or an automated system to reason to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs. Artikel-Nr. INF1000771339
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Probabilistic Graphical Models | Principles and Techniques | Daphne Koller (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2009 | MIT Press | EAN 9780262013192 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Artikel-Nr. 101579982
Anzahl: 1 verfügbar