Predicting Hotspots: Using Machine Learning to Understand Civil Conflict

Basuchoudhary, Atin; Bang, James T.; Sen, Tinni; David, John

ISBN 10: 1498520677 ISBN 13: 9781498520676
Verlag: Lexington Books, 2018
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781498520676_new

Diesen Artikel melden

Inhaltsangabe:

This book should be useful to anyone interested in identifying the causes of civil conflict and doing something to end it. It even suggests a pathway for the lay reader. Civil conflict is a persistent source of misery to humankind. Its study, however, lacks a comprehensive theory of its causes. Nevertheless, the question of cooperation or conflict is at the heart of political economy. This book introduces Machine Learning to explore whether there even is a unified theory of conflict, and if there is, whether it is a 'good' one. A good theory is one that not only identifies the causes of conflict, but also identifies those causes that predict conflict. Machine learning algorithms use out of sample techniques to choose between competing hypotheses about the sources of conflict according to their predictive accuracy. This theoretically agnostic 'picking' has the added benefit of offering some protection against many of the problems noted in the current literature; the tangled causality between conflict and its correlates, the relative rarity of civil conflict at a global level, missing data, and spectacular statistical assumptions. This book argues that the search for a unified theory of conflict must begin among these more predictive sources of civil conflict. In fact, in the book, there is a clear sense that game theoretic rational choice models of bargaining/commitment failure predict conflict better than any other approach. In addition, the algorithms highlight the fact that conflict is path dependent - it tends to continue once started. This is intuitive in many ways but is roundly ignored as a matter of science. It should not. Further, those causes of conflict that best predict conflict can be used as policy levers to end or prevent conflict. This book should therefore be of interest to military and civil leaders engaged in ending civil conflict. Last, though not least, the book highlights how the sources of conflict affect conflict. This additional insight may allow the crafting of policies that match a country's specific circumstance.

Über die Autorinnen und Autoren: Atin Basuchoudhary, is professor of business and economics at Virginia Military Institute

James T. Bang, is professor of economics at St. Ambrose University

Tinni Sen, is professor of business and economics at Virginia Military Institute

John David, is professor of applied mathematics at Virginia Military Institute

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Predicting Hotspots: Using Machine Learning ...
Verlag: Lexington Books
Erscheinungsdatum: 2018
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Bang, James T./ Basuchoudhary, Atin/ David, John/ Sen, Tinni
Verlag: Lexington Books, 2018
ISBN 10: 1498520677 ISBN 13: 9781498520676
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 160 pages. 9.25x6.25x1.75 inches. In Stock. Artikel-Nr. x-1498520677

Verkäufer kontaktieren

Neu kaufen

EUR 151,78
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb