The Nature of Statistical Learning Theory (Information Science and Statistics)

Vapnik, Vladimir

ISBN 10: 0387987800 ISBN 13: 9780387987804
Verlag: Springer, 1999
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In English. Bestandsnummer des Verkäufers ria9780387987804_new

Diesen Artikel melden

Inhaltsangabe:

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: The Nature of Statistical Learning Theory (...
Verlag: Springer
Erscheinungsdatum: 1999
Einband: Hardcover
Zustand: New
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Vladimir Vapnik
Verlag: Springer New York, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Written in readable and concise style and devoted to key learning problems, the book is intended for statisticians, mathematicia. Artikel-Nr. 5913501

Verkäufer kontaktieren

Neu kaufen

EUR 243,30
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

V. N. Vapnik
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: \* the setting of learning problems based on the model of minimizing the risk functional from empirical data \* a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency \* non-asymptotic bounds for the risk achieved using the empirical risk minimization principle \* principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds \* the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: \* the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation \* a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of. Artikel-Nr. 9780387987804

Verkäufer kontaktieren

Neu kaufen

EUR 300,06
EUR 63,27 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb