The Nature of Statistical Learning Theory (Information Science and Statistics)

Vladimir Vapnik

ISBN 10: 0387987800 ISBN 13: 9780387987804
Verlag: Springer, 1999
Neu Hardcover

Verkäufer Kennys Bookstore, Olney, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 9. Oktober 2009


Beschreibung

Beschreibung:

Discusses the fundamental ideas which lie behind the statistical theory of learning and generalization. This book considers learning as a general problem of function estimation based on empirical data. It concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. Series: Information Science and Statistics. Num Pages: 314 pages, biography. BIC Classification: PBT; UYAM; UYQM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 243 x 163 x 27. Weight in Grams: 658. . 1999. 2nd. Hardcover. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780387987804

Diesen Artikel melden

Inhaltsangabe:

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.

Críticas:

From the reviews of the second edition:

ZENTRALBLATT MATH

"...written in a concise style. It must be recommended to scientists of statistics, mathematics, physics, and computer science."

SHORT BOOK REVIEWS

"This interesting book helps a reader to understand the interconnections between various streams in the empirical modeling realm and may be recommended to any reader who feels lost in modern terminology, such as artificial intelligence, neural networks, machine learning etcetera."

"The book by Vapnik focuses on how to estimate a function of parameters from empirical data ... . The book is concisely written and is intended to be useful to statisticians, computer scientists, mathematicians, and physicists. ... This book is very well written at a very high level of abstract thinking and comprehension. The references are up-to-date." (Ramalingam Shanmugam, Journal of Statistical Computation and Simulation, Vol. 75 (2), February, 2005)

"The aim of the book is to introduce a wide range of readers to the fundamental ideas of statistical learning theory. ... Each chapter is supplemented by ‘Reasoning and Comments’ which describe the relations between classical research in mathematical statistics and research in learning theory. ... The book is well suited to promote the ideas of statistical learning theory and can be warmly recommended to all who are interested in computer learning problems." (S. Vogel, Metrika, June, 2002)

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: The Nature of Statistical Learning Theory (...
Verlag: Springer
Erscheinungsdatum: 1999
Einband: Hardcover
Zustand: New
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Vapnik, Vladimir
Verlag: Springer (edition 2nd), 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Gebraucht Hardcover

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Fair. 2nd. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way. Artikel-Nr. 0387987800-7-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 139,79
Währung umrechnen
Versand: EUR 5,59
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Vladimir Vapnik
Verlag: Springer New York, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Written in readable and concise style and devoted to key learning problems, the book is intended for statisticians, mathematicia. Artikel-Nr. 5913501

Verkäufer kontaktieren

Neu kaufen

EUR 189,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vladimir Vapnik
Verlag: Springer, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9780387987804

Verkäufer kontaktieren

Neu kaufen

EUR 213,56
Währung umrechnen
Versand: EUR 4,53
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vladimir Vapnik
Verlag: Springer, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9780387987804

Verkäufer kontaktieren

Neu kaufen

EUR 221,87
Währung umrechnen
Versand: EUR 0,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

V. N. Vapnik
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 314 pp. Englisch. Artikel-Nr. 9780387987804

Verkäufer kontaktieren

Neu kaufen

EUR 246,09
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

V. N. Vapnik
ISBN 10: 0387987800 ISBN 13: 9780387987804
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: \* the setting of learning problems based on the model of minimizing the risk functional from empirical data \* a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency \* non-asymptotic bounds for the risk achieved using the empirical risk minimization principle \* principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds \* the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: \* the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation \* a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of. Artikel-Nr. 9780387987804

Verkäufer kontaktieren

Neu kaufen

EUR 249,04
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb