Matrix Algebra: Theory, Computations and Applications in Statistics (Springer Texts in Statistics)

Gentle, James E.

ISBN 10: 3319648667 ISBN 13: 9783319648668
Verlag: Springer (edition 2nd ed. 2017), 2017
Gebraucht Paperback

Verkäufer BooksRun, Philadelphia, PA, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 2. Februar 2016

Dieses Exemplar ist nicht mehr verfügbar. Hier sind die ähnlichsten Treffer für Matrix Algebra: Theory, Computations and Applications in Statistics (Springer Texts in Statistics) von Gentle, James E..

Beschreibung

Beschreibung:

Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 3319648667-11-1

Diesen Artikel melden

Inhaltsangabe:

This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory.

Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matricesencountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; and describes various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. Part III covers numerical linear algebra―one of the most important subjects in the field of statistical computing. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors.

Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R or Matlab.

The first two parts of the text are ideal for a course in matrix algebra for statistics students or as a supplementary text for various courses in linear models or multivariate statistics. The third part is ideal for use as a text for a course in statistical computing or as a supplementary text for various courses that emphasize computations.

New to this edition

• 100 pages of additional material

• 30 more exercises―186 exercises overall
• Added discussion of vectors and matrices with complex elements
• Additional material on statistical applications
• Extensive and reader-friendly cross references and index

Über die Autorin bzw. den Autor: ​James E. Gentle, PhD, is University Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of  Science. Professor Gentle has held several national offices in the ASA and has served as editor and associate editor of journals of the ASA as well as for other journals in statistics and computing. He is author of Random Number Generation and Monte Carlo Methods (Springer, 2003) and Computational Statistics (Springer, 2009).

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Matrix Algebra: Theory, Computations and ...
Verlag: Springer (edition 2nd ed. 2017)
Erscheinungsdatum: 2017
Einband: Paperback
Zustand: Good
Auflage: 2nd ed. 2017.

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Gentle, James E.
Verlag: Springer, 2024
ISBN 10: 3031421434 ISBN 13: 9783031421433
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Fine. Artikel-Nr. mon0003788312

Verkäufer kontaktieren

Gebraucht kaufen

EUR 69,16
EUR 4,23 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Gentle, James E.
Verlag: Springer, 2024
ISBN 10: 3031421434 ISBN 13: 9783031421433
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 398149251

Verkäufer kontaktieren

Neu kaufen

EUR 74,01
EUR 7,45 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

James E. Gentle
Verlag: Springer-Verlag Gmbh, 2007
ISBN 10: 0387708723 ISBN 13: 9780387708720
Gebraucht Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebundene Ausgabe. Zustand: Sehr gut. Gebraucht - Sehr gut SG - leichte Beschädigungen oder Verschmutzungen, ungelesenes Mängelexemplar, gestempelt - Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Artikel-Nr. INF1000566224

Verkäufer kontaktieren

Gebraucht kaufen

EUR 85,70
EUR 64,92 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb