Verkäufer
PBShop.store US, Wood Dale, IL, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 7. April 2005
New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9780387942582
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé’s characterization of elementary equivalence, Lindström’s theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Von der hinteren Coverseite: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines.
Titel: Mathematical Logic
Verlag: Springer
Erscheinungsdatum: 1994
Einband: HRD
Zustand: New
Auflage: 2. Auflage
Anbieter: Klondyke, Almere, Niederlande
Zustand: Good. Original boards, illustrated with numerous equations, 8vo. Undergraduate Texts in Mathematics.; Name in pen on title page. Artikel-Nr. 343200-ZA30
Anzahl: 1 verfügbar
Anbieter: AproposBooks&Comics, London, Vereinigtes Königreich
Hardcover. Zustand: Fine. 2nd Edition. Artikel-Nr. ful/080924/HJGHJGHJG
Anzahl: 1 verfügbar
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Artikel-Nr. 277833
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -What is a mathematical proof How can proofs be justified Are there limitations to provability To what extent can machines carry out mathe matical proofs Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con sequence relation coincides with formal provability: By means of a calcu lus consisting of simple formal inference rules, one can obtain all conse quences of a given axiom system (and in particular, imitate all mathemat ical proofs). A short digression into model theory will help us to analyze the expres sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Artikel-Nr. 9780387942582
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - What is a mathematical proof How can proofs be justified Are there limitations to provability To what extent can machines carry out mathe matical proofs Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con sequence relation coincides with formal provability: By means of a calcu lus consisting of simple formal inference rules, one can obtain all conse quences of a given axiom system (and in particular, imitate all mathemat ical proofs). A short digression into model theory will help us to analyze the expres sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner. Artikel-Nr. 9780387942582
Anzahl: 1 verfügbar