Mastering Probabilistic Graphical Models Using Python: Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Ankan, Ankur; Panda, Abinash

ISBN 10: 1784394688 ISBN 13: 9781784394684
Verlag: Packt Publishing, 2015
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781784394684_new

Diesen Artikel melden

Inhaltsangabe:

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

About This Book

  • Gain in-depth knowledge of Probabilistic Graphical Models
  • Model time-series problems using Dynamic Bayesian Networks
  • A practical guide to help you apply PGMs to real-world problems

Who This Book Is For

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

What You Will Learn

  • Get to know the basics of probability theory and graph theory
  • Work with Markov networks
  • Implement Bayesian networks
  • Exact inference techniques in graphical models such as the variable elimination algorithm
  • Understand approximate inference techniques in graphical models such as message passing algorithms
  • Sampling algorithms in graphical models
  • Grasp details of Naive Bayes with real-world examples
  • Deploy probabilistic graphical models using various libraries in Python
  • Gain working details of Hidden Markov models with real-world examples

In Detail

Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems.

Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.

Reseña del editor: If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Mastering Probabilistic Graphical Models ...
Verlag: Packt Publishing
Erscheinungsdatum: 2015
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Ankan, Ankur; Panda, Abinash
Verlag: Packt Publishing, 2015
ISBN 10: 1784394688 ISBN 13: 9781784394684
Gebraucht Paperback

Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G1784394688I4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 12,23
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Ankan, Ankur|Panda, Abinash
Verlag: Packt Publishing, 2015
ISBN 10: 1784394688 ISBN 13: 9781784394684
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 464170465

Verkäufer kontaktieren

Neu kaufen

EUR 55,44
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb