Machine Learning Safety (Artificial Intelligence: Foundations, Theory, and Algorithms)

Huang, Xiaowei; Jin, Gaojie; Ruan, Wenjie

ISBN 10: 9811968136 ISBN 13: 9789811968136
Verlag: Springer, 2023
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811968136_new

Diesen Artikel melden

Inhaltsangabe:

Machine learning algorithms allow computers to learn without being explicitly programmed. Their application is now spreading to highly sophisticated tasks across multiple domains, such as medical diagnostics or fully autonomous vehicles. While this development holds great potential, it also raises new safety concerns, as machine learning has many specificities that make its behaviour prediction and assessment very different from that for explicitly programmed software systems. This book addresses the main safety concerns with regard to machine learning, including its susceptibility to environmental noise and adversarial attacks. Such vulnerabilities have become a major roadblock to the deployment of machine learning in safety-critical applications. The book presents up-to-date techniques for adversarial attacks, which are used to assess the vulnerabilities of machine learning models; formal verification, which is used to determine if a trained machine learning model is free of vulnerabilities; and adversarial training, which is used to enhance the training process and reduce vulnerabilities.

 The book aims to improve readers’ awareness of the potential safety issues regarding machine learning models. In addition, it includes up-to-date techniques for dealing with these issues, equipping readers with not only technical knowledge but also hands-on practical skills.

Über die Autorin bzw. den Autor: Xiaowei Huang is currently a Reader of Computer Science and Director of the Autonomous Cyber-Physics Systems lab at the University of Liverpool (UoL). His research is concerned with the development of automated verification techniques that ensure the correctness and reliability of intelligent systems. He has published more than 80 papers, primarily in leading conference proceedings and journals in the fields of Artificial Intelligence (e.g. Artificial Intelligence Journal, ACM Transactions on Computational Logics, NeurIPS, AAAI, IJCAI, ECCV), Formal Verification (e.g. CAV, TACAS, and Theoretical Computer Science) and Software Engineering (e.g. IEEE Transactions on Reliability, ICSE and ASE). He has been invited to give talks at several leading conferences, discussing topics related to the safety and security of applying machine learning algorithms to critical applications. He has co-chaired the AAAI and IJCAI workshop series on Artificial Intelligence Safety and been the PI or co-PI ofseveral Dstl (Ministry of Defence, UK), EPSRC and EU H2020 projects. He is the Director of the Autonomous Cyber Physical Systems Lab at Liverpool. 

Wenjie Ruan is a Senior Lecturer of Data Science at the University of Exeter, UK. His research interests lie in the adversarial robustness of deep neural networks, and in machine learning and its applications in safety-critical systems, including health data analytics and human-centered computing. His series of research works on Device-free Human Localization and Activity Recognition for Supporting the Independent Living of the Elderly garnered him a Doctoral Thesis Excellence Award from the University of Adelaide, Best Research Poster Award at the 9th ACM International Workshop on IoT and Cloud Computing, and Best Student Paper Award at the 14th International Conference on Advanced Data Mining and Applications. He was also the recipient of a prestigious DECRA fellowship from the Australian Research Council. Dr. Ruan has published more than 40 papers in international conference proceedings such as AAAI, IJCAI, SIGIR, WWW, ICDM, UbiComp, CIKM, and ASE. Dr. Ruan has served as a senior PC, PC member or invited reviewer for over 10 international conferences, including IJCAI, AAAI, ICML, NeurIPS, CVPR, ICCV, AAMAS, ECML-PKDD, etc. He is the Director of the Exeter Trustworthy AI Lab at the University of Exeter. 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Machine Learning Safety (Artificial ...
Verlag: Springer
Erscheinungsdatum: 2023
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Huang Xiaowei
Verlag: Springer, 2023
ISBN 10: 9811968136 ISBN 13: 9789811968136
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 401112856

Verkäufer kontaktieren

Neu kaufen

EUR 64,70
EUR 7,45 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Huang, Xiaowei; Jin, Gaojie; Ruan, Wenjie
Verlag: Springer, 2023
ISBN 10: 9811968136 ISBN 13: 9789811968136
Neu Hardcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-27803

Verkäufer kontaktieren

Neu kaufen

EUR 68,78
Versand gratis
Versand innerhalb von USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Xiaowei Huang
ISBN 10: 9811968136 ISBN 13: 9789811968136
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Machine learning algorithms allow computers to learn without being explicitly programmed. Their application is now spreading to highly sophisticated tasks across multiple domains, such as medical diagnostics or fully autonomous vehicles. While this development holds great potential, it also raises new safety concerns, as machine learning has many specificities that make its behaviour prediction and assessment very different from that for explicitly programmed software systems. This book addresses the main safety concerns with regard to machine learning, including its susceptibility to environmental noise and adversarial attacks. Such vulnerabilities have become a major roadblock to the deployment of machine learning in safety-critical applications. The book presents up-to-date techniques for adversarial attacks, which are used to assess the vulnerabilities of machine learning models; formal verification, which is used to determine if a trained machine learning model is free of vulnerabilities; and adversarial training, which is used to enhance the training process and reduce vulnerabilities.The book aims to improve readers¿ awareness of the potential safety issues regarding machine learning models. In addition, it includes up-to-date techniques for dealing with these issues, equipping readers with not only technical knowledge but also hands-on practical skills.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch. Artikel-Nr. 9789811968136

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Xiaowei Huang
ISBN 10: 9811968136 ISBN 13: 9789811968136
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning algorithms allow computers to learn without being explicitly programmed. Their application is now spreading to highly sophisticated tasks across multiple domains, such as medical diagnostics or fully autonomous vehicles. While this development holds great potential, it also raises new safety concerns, as machine learning has many specificities that make its behaviour prediction and assessment very different from that for explicitly programmed software systems. This book addresses the main safety concerns with regard to machine learning, including its susceptibility to environmental noise and adversarial attacks. Such vulnerabilities have become a major roadblock to the deployment of machine learning in safety-critical applications. The book presents up-to-date techniques for adversarial attacks, which are used to assess the vulnerabilities of machine learning models; formal verification, which is used to determine if a trained machine learning model is free of vulnerabilities; and adversarial training, which is used to enhance the training process and reduce vulnerabilities.The book aims to improve readers' awareness of the potential safety issues regarding machine learning models. In addition, it includes up-to-date techniques for dealing with these issues, equipping readers with not only technical knowledge but also hands-on practical skills. Artikel-Nr. 9789811968136

Verkäufer kontaktieren

Neu kaufen

EUR 79,75
EUR 63,38 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Huang, Xiaowei (Author)/ Jin, Gaojie (Author)/ Ruan, Wenjie (Author)
Verlag: Springer, 2023
ISBN 10: 9811968136 ISBN 13: 9789811968136
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 338 pages. 9.25x6.10x0.81 inches. In Stock. Artikel-Nr. x-9811968136

Verkäufer kontaktieren

Neu kaufen

EUR 113,30
EUR 14,32 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb