Verkäufer
BooksRun, Philadelphia, PA, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 2. Februar 2016
Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 0134116542-11-1
The typical data science task in industry starts with an “ask” from the business. But few data scientists have been taught what to do with that ask. This book shows them how to assess it in the context of the business’s goals, reframe it to work optimally for both the data scientist and the employer, and then execute on it. Written by two of the experts who’ve achieved breakthrough optimizations at BuzzFeed, it’s packed with real-world examples that take you from start to finish: from ask to actionable insight.
Andrew Kelleher and Adam Kelleher walk you through well-formed, concrete principles for approaching common data science problems, giving you an easy-to-use checklist for effective execution. Using their principles and techniques, you’ll gain deeper understanding of your data, learn how to analyze noise and confounding variables so they don’t compromise your analysis, and save weeks of iterative improvement by planning your projects more effectively upfront.
Once you’ve mastered their principles, you’ll put them to work in two realistic, beginning-to-end site optimization tasks. These extended examples come complete with reusable code examples and recommended open-source solutions designed for easy adaptation to your everyday challenges. They will be especially valuable for anyone seeking their first data science job -- and everyone who’s found that job and wants to succeed in it.
Über die Autorin bzw. den Autor:
Andrew Kelleher is a staff software engineer and distributed systems architect at Venmo. He was previously a staff software engineer at BuzzFeed and has worked on data pipelines and algorithm implementations for modern optimization. He graduated with a BS in physics from Clemson University. He runs a meetup in New York City that studies the fundamentals behind distributed systems in the context of production applications, and was ranked one of FastCompany's most creative people two years in a row.
Adam Kelleher wrote this book while working as principal data scientist at BuzzFeed and adjunct professor at Columbia University in the City of New York. As of May 2018, he is chief data scientist for research at Barclays and teaches causal inference and machine learning products at Columbia. He graduated from Clemson University with a BS in physics, and has a PhD in cosmology from University of North Carolina at Chapel Hill.
Titel: Machine Learning in Production: Developing ...
Verlag: Addison-Wesley Professional (edition 1)
Erscheinungsdatum: 2019
Einband: Paperback
Zustand: Good
Auflage: 1.
Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G0134116542I4N00
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370834013
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-327611
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-25918
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 255 pages. 9.00x7.00x0.50 inches. In Stock. Artikel-Nr. zk0134116542
Anzahl: 1 verfügbar