Verkäufer
Better World Books, Mishawaka, IN, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 3. August 2006
Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 51913717-6
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems
Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain
The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field.
The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift.
Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques.
With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.
This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you're not a developer but want to manage or understand the product lifecycle of these systems, you'll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
Über die Autorin bzw. den Autor: Andrew P. McMahon has spent years building high-impact ML products across a variety of industries. He is currently Head of MLOps for NatWest Group in the UK and has a PhD in theoretical condensed matter physics from Imperial College London. He is an active blogger, speaker, podcast guest, and leading voice in the MLOps community. He is co-host of the AI Right podcast and was named 'Rising Star of the Year' at the 2022 British Data Awards and 'Data Scientist of the Year' by the Data Science Foundation in 2019.
Titel: Machine Learning Engineering with Python : ...
Verlag: Packt Publishing, Limited
Erscheinungsdatum: 2023
Einband: Softcover
Zustand: Very Good
Auflage: 2. Auflage
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 276 | Sprache: Englisch | Produktart: Bücher | Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environmentsKey FeaturesExplore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book Description Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learnFind out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.Table of ContentsIntroduction to ML Engineering The Machine Learning Development Process From Model to Model Factory Packaging Up Deployment Patterns and Tools Scaling Up Building an Example ML Microservice Building an Extract Transform Machine Learning Use Case. Artikel-Nr. 38266232/2
Anzahl: 1 verfügbar
Anbieter: Studibuch, Stuttgart, Deutschland
paperback. Zustand: Gut. 276 Seiten; 9781801079259.3 Gewicht in Gramm: 500. Artikel-Nr. 964456
Anzahl: 1 verfügbar