Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner

Shmueli, Galit; Bruce, Peter C.; Deokar, Amit V.; Patel, Nitin R.

ISBN 10: 1119828791 ISBN 13: 9781119828792
Verlag: Wiley, 2023
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781119828792_new

Diesen Artikel melden

Inhaltsangabe:

Machine Learning for Business Analytics

Machine learning―also known as data mining or data analytics―is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the seventh edition of Machine Learning for Business Analytics, and the first using RapidMiner software. This edition also includes:

  • A new co-author, Amit Deokar, who brings experience teaching business analytics courses using RapidMiner
  • Integrated use of RapidMiner, an open-source machine learning platform that has become commercially popular in recent years
  • An expanded chapter focused on discussion of deep learning techniques
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

Über die Autorin bzw. den Autor:

Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science, College of Technology Management. She has designed and instructed business analytics courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan.

Peter C. Bruce, is Founder of the Institute for Statistics Education at Statistics.com, and Chief Learning Officer at Elder Research, Inc.

Amit V. Deokar, PhD, is Associate Dean of Undergraduate Programs and an Associate Professor of Management Information Systems at the Manning School of Business at University of Massachusetts Lowell. Since 2006, he has developed and taught courses in business analytics, with expertise in using the RapidMiner platform. He is an Association for Information Systems Distinguished Member Cum Laude.

Nitin R. Patel, PhD, is cofounder and lead researcher at Cytel Inc. He was also a co-founder of Tata Consultancy Services. A Fellow of the American Statistical Association, Dr. Patel has served as a visiting professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Machine Learning for Business Analytics: ...
Verlag: Wiley
Erscheinungsdatum: 2023
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Amit V. Deokar
Verlag: Wiley, 2023
ISBN 10: 1119828791 ISBN 13: 9781119828792
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781119828792

Verkäufer kontaktieren

Neu kaufen

EUR 111,97
EUR 9,67 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shmueli, Galit; Bruce, Peter C.; Deokar, Amit V.; Patel, Nitin R.
Verlag: Wiley, 2023
ISBN 10: 1119828791 ISBN 13: 9781119828792
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 402209618

Verkäufer kontaktieren

Neu kaufen

EUR 149,07
EUR 7,40 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

Galit Shmueli
Verlag: Wiley Mär 2023, 2023
ISBN 10: 1119828791 ISBN 13: 9781119828792
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - Machine Learning for Business AnalyticsMachine learning--also known as data mining or data analytics--is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.This is the seventh edition of Machine Learning for Business Analytics, and the first using RapidMiner software. This edition also includes:\* A new co-author, Amit Deokar, who brings experience teaching business analytics courses using RapidMiner\* Integrated use of RapidMiner, an open-source machine learning platform that has become commercially popular in recent years\* An expanded chapter focused on discussion of deep learning techniques\* A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning\* A new chapter on responsible data science\* Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students\* A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques\* End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented\* A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutionsThis textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology. Artikel-Nr. 9781119828792

Verkäufer kontaktieren

Neu kaufen

EUR 151,42
EUR 66,47 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shmueli, G (Author)
Verlag: WileyBlackwell, 2023
ISBN 10: 1119828791 ISBN 13: 9781119828792
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 540 pages. 10.28x7.28x1.22 inches. In Stock. Artikel-Nr. __1119828791

Verkäufer kontaktieren

Neu kaufen

EUR 159,77
EUR 17,08 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb