Low-overhead Communications in IoT Networks: Structured Signal Processing Approaches

Shi, Yuanming; Dong, Jialin; Zhang, Jun

ISBN 10: 9811538697 ISBN 13: 9789811538698
Verlag: Springer, 2020
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811538698_new

Diesen Artikel melden

Inhaltsangabe:

The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains.

This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools.

Über die Autorin bzw. den Autor:

Yuanming Shi received his B.S. degree in Electronic Engineering from Tsinghua University, Beijing, China, in 2011, and his Ph.D. in Electronic and Computer Engineering from The Hong Kong University of Science and Technology (HKUST), in 2015. Since September 2015, he has been at the School of Information Science and Technology at ShanghaiTech University, where he is currently a tenured Associate Professor. He visited the University of California, Berkeley, USA, from October 2016 to February 2017. Dr. Shi is a recipient of the 2016 IEEE Marconi Prize Paper Award in Wireless Communications, and the 2016 Young Author Best Paper Award by the IEEE Signal Processing Society. His research areas include optimization, statistics, machine learning and signal processing, and their applications to 6G, IoT and AI.

Jialin Dong received her B.S. degree in Communication Engineering from the University of Electronic Science and Technology of China, Chengdu, China, in 2017. She is currently a graduate student at ShanghaiTech University’s School of Information Science and Technology, and is also a Research Assistant at the Department of Electronic and Information Engineering at the Hong Kong Polytechnic University. Her research interests include mathematical optimization and high-dimensional probability.

Jun Zhang received his Ph.D. in Electrical and Computer Engineering from the University of Texas at Austin in 2009. He is an Assistant Professor at the Department of Electronic and Information Engineering at the Hong Kong Polytechnic University (PolyU). His research interests include wireless communications and networking, mobile edge computing and edge learning, distributed learning and optimization, and big data analytics. Dr. Zhang co-authored the books “Fundamentals of LTE” (Prentice-Hall, 2010), and “Stochastic Geometry Analysis of Multi-Antenna Wireless Networks” (Springer, 2019). He is a co-recipient of the 2019 IEEE Communications Society & Information Theory Society Joint Paper Award, the 2016 Marconi Prize Paper Award in Wireless Communications, and the 2014 Best Paper Award for the EURASIP Journal on Advances in Signal Processing. Two papers he co-authored received the IEEE Signal Processing Society’s Young Author Best Paper Award in 2016 and 2018, respectively. He also received the 2016 IEEE ComSoc Asia-Pacific Best Young Researcher Award. He is an editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Communications, and the Journal of Communications and Information Networks.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Low-overhead Communications in IoT Networks:...
Verlag: Springer
Erscheinungsdatum: 2020
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Shi, Yuanming
ISBN 10: 9811538697 ISBN 13: 9789811538698
Gebraucht Hardcover Erstausgabe

Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

1st ed. 2020. XIV, 152 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Artikel-Nr. 2755LB

Verkäufer kontaktieren

Gebraucht kaufen

EUR 19,00
EUR 30,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Yuanming Shi
ISBN 10: 9811538697 ISBN 13: 9789811538698
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains.This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 168 pp. Englisch. Artikel-Nr. 9789811538698

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Yuanming Shi
ISBN 10: 9811538697 ISBN 13: 9789811538698
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains.This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools. Artikel-Nr. 9789811538698

Verkäufer kontaktieren

Neu kaufen

EUR 111,35
EUR 62,12 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shi, Yuanming (Author)/ Dong, Jialin (Author)/ Zhang, Jun (Author)
Verlag: Springer, 2020
ISBN 10: 9811538697 ISBN 13: 9789811538698
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 166 pages. 9.25x6.10x0.44 inches. In Stock. Artikel-Nr. x-9811538697

Verkäufer kontaktieren

Neu kaufen

EUR 150,33
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb