A Logical Introduction to Proof

Cunningham, Daniel W.

ISBN 10: 1461436303 ISBN 13: 9781461436300
Verlag: Springer (edition 2013), 2012
Gebraucht Hardcover

Verkäufer BooksRun, Philadelphia, PA, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 2. Februar 2016


Beschreibung

Beschreibung:

Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1461436303-11-1

Diesen Artikel melden

Inhaltsangabe:

The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

Von der hinteren Coverseite:

A Logical Introduction to Proof is a unique textbook that uses a logic-first approach to train and guide undergraduates through a transition or “bridge” course between calculus and advanced mathematics courses. The author’s approach prepares the student for the rigors required in future mathematics courses and is appropriate for majors in mathematics, computer science, engineering, as well as other applied mathematical sciences. It may also be beneficial as a supplement for students at the graduate level who need guidance or reference for writing proofs. Core topics covered are logic, sets, relations, functions, and induction, where logic is the instrument for analyzing the structure of mathematical assertions and is a tool for composing mathematical proofs. Exercises are given at the end of each section within a chapter.

Chapter 1 focuses on propositional logic while Chapter 2 is devoted to the logic of quantifiers. Chapter 3 methodically presents the key strategies that are used in mathematical proofs; each presented as a proof diagram. Every proof strategy is carefully illustrated by a variety of mathematical theorems concerning the natural, rational, and real numbers. Chapter 4 focuses on mathematical induction and concludes with a proof of the fundamental theorem of arithmetic. Chapters 5 through 7 introduce students to the essential concepts that appear in all branches of mathematics. Chapter 8 introduces the basic structures of abstract algebra: groups, rings, quotient groups, and quotient rings. Finally, Chapter 9 presents proof strategies that explicitly show students how to deal with the fundamental definitions that they will encounter in real analysis, followed by numerous examples of proofs that use these strategies. The appendix provides a useful summary of strategies for dealing with proofs.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: A Logical Introduction to Proof
Verlag: Springer (edition 2013)
Erscheinungsdatum: 2012
Einband: Hardcover
Zustand: Good
Auflage: 2013.

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Cunningham, Daniel W.
Verlag: Springer, 2012
ISBN 10: 1461436303 ISBN 13: 9781461436300
Gebraucht Hardcover

Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G1461436303I4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 36,91
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel W. Cunningham
ISBN 10: 1461436303 ISBN 13: 9781461436300
Neu Buch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Artikel-Nr. 9781461436300

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel W. Cunningham
ISBN 10: 1461436303 ISBN 13: 9781461436300
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A Logical Introduction to Proof is a unique textbook that uses a logic-first approach to train and guide undergraduates through a transition or bridge course between calculus and advanced mathematics courses. The author s approach prepares the student for the rigors required in future mathematics courses and is appropriate for majors in mathematics, computer science, engineering, as well as other applied mathematical sciences. It may also be beneficial as a supplement for students at the graduate level who need guidance or reference for writing proofs. Core topics covered are logic, sets, relations, functions, and induction, where logic is the instrument for analyzing the structure of mathematical assertions and is a tool for composing mathematical proofs. Exercises are given at the end of each section within a chapter.Chapter 1 focuses on propositional logic while Chapter 2 is devoted to the logic of quantifiers. Chapter 3 methodically presents the key strategies that are used in mathematical proofs; each presented as a proof diagram. Every proof strategy is carefully illustrated by a variety of mathematical theorems concerning the natural, rational, and real numbers. Chapter 4 focuses on mathematical induction and concludes with a proof of the fundamental theorem of arithmetic. Chapters 5 through 7 introduce students to the essential concepts that appear in all branches of mathematics. Chapter 8 introduces the basic structures of abstract algebra: groups, rings, quotient groups, and quotient rings. Finally, Chapter 9 presents proof strategies that explicitly show students how to deal with the fundamental definitions that they will encounter in real analysis, followed by numerous examples of proofs that use these strategies. The appendix provides a useful summary of strategies for dealing with proofs. Artikel-Nr. 9781461436300

Verkäufer kontaktieren

Neu kaufen

EUR 79,75
EUR 63,62 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Cunningham, Daniel W.
Verlag: Springer Verlag, 2012
ISBN 10: 1461436303 ISBN 13: 9781461436300
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 356 pages. 9.00x6.25x1.00 inches. In Stock. Artikel-Nr. x-1461436303

Verkäufer kontaktieren

Neu kaufen

EUR 114,83
EUR 14,28 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb