Linear Time Varying Systems and Sampled-data Systems (Lecture Notes in Control and Information Sciences, 265)

Ichikawa, Akira; Katayama, Hitoshi

ISBN 10: 1852334398 ISBN 13: 9781852334390
Verlag: Springer, 2001
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781852334390_new

Diesen Artikel melden

Inhaltsangabe:

This book gives an introduction to H-infinity and H2 control for linear time-varying systems. Chapter 2 is concerned with continuous-time systems while Chapter 3 is devoted to discrete-time systems.
The main aim of this book is to develop the H-infinity and H2 theory for jump systems and to apply it to sampled-data systems. The jump system gives a natural state space representation of sampled-data systems, and original signals and parameters are maintained in the new system. Two earlier chapters serve as preliminaries. Chapter 4 introduces jump systems and develops the H-infinity and H2 theory for them. It is then applied to sampled-data systems in Chapter 5.
The new features of this book are as follows: The H-infinity control theory is developed for time-varying systems with initial uncertainty. Recent results on the relation of three Riccati equations are included. The H2 theory usually given for time-invariant systems is extended to time-varying systems. The H-infinity and H2 theory for sampled-data systems is established from the jump system point of view. Extension of the theory to infinite dimensional systems and nonlinear systems is discussed. This covers the sampled-data system with first-order hold. In this book 16 examples and 40 figures of computer simulations are included.
The reader can find the H-infinity and H2 theory for linear time-varying systems and sampled-data systems developed in a unified manner. Some arguments inherent to time varying systems or the jump system point of view to sampled-data systems may give new insights into the system theory of time-invariant systems and sampled-data systems.

Reseña del editor: This book gives an introduction to H-infinity and H2 control for linear time-varying systems. Chapter 2 is concerned with continuous-time systems while Chapter 3 is devoted to discrete-time systems.
The main aim of this book is to develop the H-infinity and H2 theory for jump systems and to apply it to sampled-data systems. The jump system gives a natural state space representation of sampled-data systems, and original signals and parameters are maintained in the new system. Two earlier chapters serve as preliminaries. Chapter 4 introduces jump systems and develops the H-infinity and H2 theory for them. It is then applied to sampled-data systems in Chapter 5.
The new features of this book are as follows: The H-infinity control theory is developed for time-varying systems with initial uncertainty. Recent results on the relation of three Riccati equations are included. The H2 theory usually given for time-invariant systems is extended to time-varying systems. The H-infinity and H2 theory for sampled-data systems is established from the jump system point of view. Extension of the theory to infinite dimensional systems and nonlinear systems is discussed. This covers the sampled-data system with first-order hold. In this book 16 examples and 40 figures of computer simulations are included.
The reader can find the H-infinity and H2 theory for linear time-varying systems and sampled-data systems developed in a unified manner. Some arguments inherent to time varying systems or the jump system point of view to sampled-data systems may give new insights into the system theory of time-invariant systems and sampled-data systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Linear Time Varying Systems and Sampled-data...
Verlag: Springer
Erscheinungsdatum: 2001
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Hitoshi Katayama, Akira Ichikawa
Verlag: Springer London, 2001
ISBN 10: 1852334398 ISBN 13: 9781852334390
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 376 | Sprache: Englisch | Produktart: Bücher | This book gives an introduction to H-infinity and H2 control for linear time-varying systems. Chapter 2 is concerned with continuous-time systems while Chapter 3 is devoted to discrete-time systems.The main aim of this book is to develop the H-infinity and H2 theory for jump systems and to apply it to sampled-data systems. The jump system gives a natural state space representation of sampled-data systems, and original signals and parameters are maintained in the new system. Two earlier chapters serve as preliminaries. Chapter 4 introduces jump systems and develops the H-infinity and H2 theory for them. It is then applied to sampled-data systems in Chapter 5.The new features of this book are as follows: The H-infinity control theory is developed for time-varying systems with initial uncertainty. Recent results on the relation of three Riccati equations are included. The H2 theory usually given for time-invariant systems is extended to time-varying systems. The H-infinity and H2 theory for sampled-data systems is established from the jump system point of view. Extension of the theory to infinite dimensional systems and nonlinear systems is discussed. This covers the sampled-data system with first-order hold. In this book 16 examples and 40 figures of computer simulations are included.The reader can find the H-infinity and H2 theory for linear time-varying systems and sampled-data systems developed in a unified manner. Some arguments inherent to time varying systems or the jump system point of view to sampled-data systems may give new insights into the system theory of time-invariant systems and sampled-data systems. Artikel-Nr. 419852/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 85,77
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Hitoshi Katayama (u. a.)
Verlag: Springer, 2001
ISBN 10: 1852334398 ISBN 13: 9781852334390
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Linear Time Varying Systems and Sampled-data Systems | Hitoshi Katayama (u. a.) | Taschenbuch | x | Englisch | 2001 | Springer | EAN 9781852334390 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105014574

Verkäufer kontaktieren

Neu kaufen

EUR 141,30
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Hitoshi Katayama
ISBN 10: 1852334398 ISBN 13: 9781852334390
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book gives an introduction to H-infinity and H2 control for linear time-varying systems. Chapter 2 is concerned with continuous-time systems while Chapter 3 is devoted to discrete-time systems.The main aim of this book is to develop the H-infinity and H2 theory for jump systems and to apply it to sampled-data systems. The jump system gives a natural state space representation of sampled-data systems, and original signals and parameters are maintained in the new system. Two earlier chapters serve as preliminaries. Chapter 4 introduces jump systems and develops the H-infinity and H2 theory for them. It is then applied to sampled-data systems in Chapter 5.The new features of this book are as follows: The H-infinity control theory is developed for time-varying systems with initial uncertainty. Recent results on the relation of three Riccati equations are included. The H2 theory usually given for time-invariant systems is extended to time-varying systems. The H-infinity and H2 theory for sampled-data systems is established from the jump system point of view. Extension of the theory to infinite dimensional systems and nonlinear systems is discussed. This covers the sampled-data system with first-order hold. In this book 16 examples and 40 figures of computer simulations are included.The reader can find the H-infinity and H2 theory for linear time-varying systems and sampled-data systems developed in a unified manner. Some arguments inherent to time varying systems or the jump system point of view to sampled-data systems may give new insights into the system theory of time-invariant systems and sampled-data systems. Artikel-Nr. 9781852334390

Verkäufer kontaktieren

Neu kaufen

EUR 168,73
EUR 62,82 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb