Learning Predictive Analytics with Python
Kumar, Ashish
Verkauft von ThriftBooks-Dallas, Dallas, TX, USA
AbeBooks-Verkäufer seit 2. Juli 2009
Gebraucht - Softcover
Zustand: Gebraucht - Befriedigend
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von ThriftBooks-Dallas, Dallas, TX, USA
AbeBooks-Verkäufer seit 2. Juli 2009
Zustand: Gebraucht - Befriedigend
Anzahl: 1 verfügbar
In den Warenkorb legenPages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.55.
Bestandsnummer des Verkäufers G1783983264I3N00
Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age.
This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy.
You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Ashish Kumar has a B.Tech from IIT Madras and is a Young India Fellow from the batch of 2012-13. He is a data science enthusiast with extensive work experience in the field. As a part of his work experience, he has worked with tools, such as Python, R, and SAS. He has also implemented predictive algorithms to glean actionable insights for clients from transport and logistics, online payment, and healthcare industries. Apart from the data sciences, he is enthused by and adept at financial modelling and operational research. He is a prolific writer and has authored several online articles and short stories apart from running his own analytics blog. He also works pro-bono for a couple of social enterprises and freelances his data science skills.
He can be contacted on LinkedIn at https://goo.gl/yqrfo4, and on Twitter at https://twitter.com/asis64.
Key Features
Book Description
Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age.
This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy.
You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
What you will learn
About the Author
Ashish Kumar has a B.Tech from IIT Madras and is a Young India Fellow from the batch of 2012-13. He is a data science enthusiast with extensive work experience in the field. As a part of his work experience, he has worked with tools, such as Python, R, and SAS. He has also implemented predictive algorithms to glean actionable insights for clients from transport and logistics, online payment, and healthcare industries. Apart from the data sciences, he is enthused by and adept at financial modelling and operational research. He is a prolific writer and has authored several online articles and short stories apart from running his own analytics blog. He also works pro-bono for a couple of social enterprises and freelances his data science skills.
He can be contacted on LinkedIn at https://goo.gl/yqrfo4, and on Twitter at https://twitter.com/asis64.
Table of Contents
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We guarantee each book that we send you. If you have any problems, please contact
our dedicated customer service department. They will do everything possible to
ensure you are happy with your order.
All domestic Standard and Expedited shipments are distributed from our warehouses by OSM, then handed off to the USPS for final delivery.
2-Day Shipping is delivered by FedEx, which does not deliver to PO boxes.
International shipments are tendered to the local postal service in the destination country for final delivery – we do not use courier services for international deliveries.
Bestellmenge | 14 bis 28 Werktage | 14 bis 28 Werktage |
---|---|---|
Erster Artikel | EUR 9.86 | EUR 9.86 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.