Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications

ISBN 10: 9811965544 ISBN 13: 9789811965548
Verlag: Springer, 2023
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015

Dieses Exemplar ist nicht mehr verfügbar. Hier sind die ähnlichsten Treffer für Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications.

Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811965548_new

Diesen Artikel melden

Inhaltsangabe:

This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.

On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Learning with Fractional Orthogonal Kernel ...
Verlag: Springer
Erscheinungsdatum: 2023
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Unbekannt
ISBN 10: 9811965528 ISBN 13: 9789811965524
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 320 | Sprache: Englisch | Produktart: Bücher | This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. Artikel-Nr. 40310794/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 80,88
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Unbekannt
Verlag: Springer, 2024
ISBN 10: 9811965552 ISBN 13: 9789811965555
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 319 | Sprache: Englisch | Produktart: Bücher | This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. Artikel-Nr. 42808254/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 89,21
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Jamal Amani Rad (u. a.)
Verlag: Springer, 2024
ISBN 10: 9811965552 ISBN 13: 9789811965555
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines | Theory, Algorithms and Applications | Jamal Amani Rad (u. a.) | Taschenbuch | xiv | Englisch | 2024 | Springer | EAN 9789811965555 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 128693952

Verkäufer kontaktieren

Neu kaufen

EUR 132,20
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Jamal Amani Rad
Verlag: Springer, Springer, 2024
ISBN 10: 9811965552 ISBN 13: 9789811965555
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. Artikel-Nr. 9789811965555

Verkäufer kontaktieren

Neu kaufen

EUR 155,88
EUR 62,44 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Jamal Amani Rad
Verlag: Springer, Springer, 2023
ISBN 10: 9811965528 ISBN 13: 9789811965524
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. Artikel-Nr. 9789811965524

Verkäufer kontaktieren

Neu kaufen

EUR 155,88
EUR 63,24 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rad, Jamal Amani (Editor)/ Parand, Kourosh (Editor)/ Chakraverty, Snehashish (Editor)
Verlag: Springer Nature, 2023
ISBN 10: 9811965528 ISBN 13: 9789811965524
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 319 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-9811965528

Verkäufer kontaktieren

Neu kaufen

EUR 218,94
EUR 14,23 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb